Step |
Hyp |
Ref |
Expression |
1 |
|
tglngval.p |
|
2 |
|
tglngval.l |
|
3 |
|
tglngval.i |
|
4 |
|
tglngval.g |
|
5 |
|
tglngval.x |
|
6 |
|
tglngval.y |
|
7 |
|
tgcolg.z |
|
8 |
|
lnxfr.r |
|
9 |
|
lnxfr.a |
|
10 |
|
lnxfr.b |
|
11 |
|
lnxfr.d |
|
12 |
|
tgidinside.1 |
|
13 |
|
tgidinside.2 |
|
14 |
|
tgidinside.3 |
|
15 |
4
|
adantr |
|
16 |
5
|
adantr |
|
17 |
7
|
adantr |
|
18 |
12
|
adantr |
|
19 |
|
simpr |
|
20 |
19
|
oveq2d |
|
21 |
18 20
|
eleqtrrd |
|
22 |
1 11 3 15 16 17 21
|
axtgbtwnid |
|
23 |
9
|
adantr |
|
24 |
13
|
adantr |
|
25 |
1 11 3 15 16 17 16 23 24 22
|
tgcgreq |
|
26 |
22 25
|
eqtr3d |
|
27 |
4
|
adantr |
|
28 |
5
|
adantr |
|
29 |
6
|
adantr |
|
30 |
7
|
adantr |
|
31 |
9
|
adantr |
|
32 |
10
|
adantr |
|
33 |
|
simpr |
|
34 |
1 2 3 4 5 7 6 12
|
btwncolg3 |
|
35 |
34
|
adantr |
|
36 |
13
|
adantr |
|
37 |
14
|
adantr |
|
38 |
1 2 3 27 28 29 30 8 31 32 11 33 35 36 37
|
lnid |
|
39 |
26 38
|
pm2.61dane |
|