Metamath Proof Explorer


Theorem tgifscgr

Description: Inner five segment congruence. Take two triangles, A D C and E H K , with B between A and C and F between E and K . If the other components of the triangles are congruent, then so are B D and F H . Theorem 4.2 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019)

Ref Expression
Hypotheses tgbtwncgr.p P = Base G
tgbtwncgr.m - ˙ = dist G
tgbtwncgr.i I = Itv G
tgbtwncgr.g φ G 𝒢 Tarski
tgbtwncgr.a φ A P
tgbtwncgr.b φ B P
tgbtwncgr.c φ C P
tgbtwncgr.d φ D P
tgifscgr.e φ E P
tgifscgr.f φ F P
tgifscgr.g φ K P
tgifscgr.h φ H P
tgifscgr.1 φ B A I C
tgifscgr.2 φ F E I K
tgifscgr.3 φ A - ˙ C = E - ˙ K
tgifscgr.4 φ B - ˙ C = F - ˙ K
tgifscgr.5 φ A - ˙ D = E - ˙ H
tgifscgr.6 φ C - ˙ D = K - ˙ H
Assertion tgifscgr φ B - ˙ D = F - ˙ H

Proof

Step Hyp Ref Expression
1 tgbtwncgr.p P = Base G
2 tgbtwncgr.m - ˙ = dist G
3 tgbtwncgr.i I = Itv G
4 tgbtwncgr.g φ G 𝒢 Tarski
5 tgbtwncgr.a φ A P
6 tgbtwncgr.b φ B P
7 tgbtwncgr.c φ C P
8 tgbtwncgr.d φ D P
9 tgifscgr.e φ E P
10 tgifscgr.f φ F P
11 tgifscgr.g φ K P
12 tgifscgr.h φ H P
13 tgifscgr.1 φ B A I C
14 tgifscgr.2 φ F E I K
15 tgifscgr.3 φ A - ˙ C = E - ˙ K
16 tgifscgr.4 φ B - ˙ C = F - ˙ K
17 tgifscgr.5 φ A - ˙ D = E - ˙ H
18 tgifscgr.6 φ C - ˙ D = K - ˙ H
19 4 adantr φ P = 1 G 𝒢 Tarski
20 6 adantr φ P = 1 B P
21 8 adantr φ P = 1 D P
22 10 adantr φ P = 1 F P
23 simpr φ P = 1 P = 1
24 12 adantr φ P = 1 H P
25 1 2 3 19 20 21 22 23 24 tgldim0cgr φ P = 1 B - ˙ D = F - ˙ H
26 18 ad2antrr φ 2 P A = C C - ˙ D = K - ˙ H
27 4 ad2antrr φ 2 P A = C G 𝒢 Tarski
28 7 ad2antrr φ 2 P A = C C P
29 6 ad2antrr φ 2 P A = C B P
30 13 ad2antrr φ 2 P A = C B A I C
31 simpr φ 2 P A = C A = C
32 31 oveq1d φ 2 P A = C A I C = C I C
33 30 32 eleqtrd φ 2 P A = C B C I C
34 1 2 3 27 28 29 33 axtgbtwnid φ 2 P A = C C = B
35 34 oveq1d φ 2 P A = C C - ˙ D = B - ˙ D
36 11 ad2antrr φ 2 P A = C K P
37 10 ad2antrr φ 2 P A = C F P
38 14 ad2antrr φ 2 P A = C F E I K
39 9 ad2antrr φ 2 P A = C E P
40 5 ad2antrr φ 2 P A = C A P
41 31 oveq2d φ 2 P A = C A - ˙ A = A - ˙ C
42 15 ad2antrr φ 2 P A = C A - ˙ C = E - ˙ K
43 41 42 eqtr2d φ 2 P A = C E - ˙ K = A - ˙ A
44 1 2 3 27 39 36 40 43 axtgcgrid φ 2 P A = C E = K
45 44 oveq1d φ 2 P A = C E I K = K I K
46 38 45 eleqtrd φ 2 P A = C F K I K
47 1 2 3 27 36 37 46 axtgbtwnid φ 2 P A = C K = F
48 47 oveq1d φ 2 P A = C K - ˙ H = F - ˙ H
49 26 35 48 3eqtr3d φ 2 P A = C B - ˙ D = F - ˙ H
50 4 ad2antrr φ 2 P A C G 𝒢 Tarski
51 50 ad2antrr φ 2 P A C e P C A I e C e G 𝒢 Tarski
52 51 ad2antrr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e G 𝒢 Tarski
53 simp-4r φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e e P
54 7 ad2antrr φ 2 P A C C P
55 54 ad2antrr φ 2 P A C e P C A I e C e C P
56 55 ad2antrr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C P
57 6 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e B P
58 simplr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e f P
59 11 ad4antr φ 2 P A C e P C A I e C e K P
60 59 ad2antrr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e K P
61 10 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e F P
62 8 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e D P
63 12 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e H P
64 simpllr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C A I e C e
65 64 simprd φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C e
66 65 necomd φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e e C
67 5 ad2antrr φ 2 P A C A P
68 67 ad4antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e A P
69 13 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e B A I C
70 64 simpld φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C A I e
71 1 2 3 52 68 57 56 53 69 70 tgbtwnexch3 φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C B I e
72 1 2 3 52 57 56 53 71 tgbtwncom φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C e I B
73 9 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e E P
74 14 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e F E I K
75 simprl φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e K E I f
76 1 2 3 52 73 61 60 58 74 75 tgbtwnexch3 φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e K F I f
77 1 2 3 52 61 60 58 76 tgbtwncom φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e K f I F
78 simprr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e K - ˙ f = C - ˙ e
79 78 eqcomd φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C - ˙ e = K - ˙ f
80 1 2 3 52 56 53 60 58 79 tgcgrcomlr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e e - ˙ C = f - ˙ K
81 16 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e B - ˙ C = F - ˙ K
82 1 2 3 52 57 56 61 60 81 tgcgrcomlr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C - ˙ B = K - ˙ F
83 simp-5r φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e A C
84 15 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e A - ˙ C = E - ˙ K
85 17 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e A - ˙ D = E - ˙ H
86 18 ad6antr φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e C - ˙ D = K - ˙ H
87 1 2 3 52 68 56 53 73 60 58 62 63 83 70 75 84 79 85 86 axtg5seg φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e e - ˙ D = f - ˙ H
88 1 2 3 52 53 56 57 58 60 61 62 63 66 72 77 80 82 87 86 axtg5seg φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e B - ˙ D = F - ˙ H
89 9 ad4antr φ 2 P A C e P C A I e C e E P
90 simplr φ 2 P A C e P C A I e C e e P
91 1 2 3 51 89 59 55 90 axtgsegcon φ 2 P A C e P C A I e C e f P K E I f K - ˙ f = C - ˙ e
92 88 91 r19.29a φ 2 P A C e P C A I e C e B - ˙ D = F - ˙ H
93 simplr φ 2 P A C 2 P
94 1 2 3 50 67 54 93 tgbtwndiff φ 2 P A C e P C A I e C e
95 92 94 r19.29a φ 2 P A C B - ˙ D = F - ˙ H
96 49 95 pm2.61dane φ 2 P B - ˙ D = F - ˙ H
97 1 5 tgldimor φ P = 1 2 P
98 25 96 97 mpjaodan φ B - ˙ D = F - ˙ H