Metamath Proof Explorer


Theorem tgioo

Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypotheses remet.1 D = abs 2
tgioo.2 J = MetOpen D
Assertion tgioo topGen ran . = J

Proof

Step Hyp Ref Expression
1 remet.1 D = abs 2
2 tgioo.2 J = MetOpen D
3 1 rexmet D ∞Met
4 2 mopnval D ∞Met J = topGen ran ball D
5 3 4 ax-mp J = topGen ran ball D
6 1 blssioo ran ball D ran .
7 elssuni v ran . v ran .
8 unirnioo = ran .
9 7 8 sseqtrrdi v ran . v
10 retopbas ran . TopBases
11 10 a1i v ran . x v ran . TopBases
12 simpl v ran . x v v ran .
13 9 sselda v ran . x v x
14 1re 1
15 1 bl2ioo x 1 x ball D 1 = x 1 x + 1
16 14 15 mpan2 x x ball D 1 = x 1 x + 1
17 ioof . : * × * 𝒫
18 ffn . : * × * 𝒫 . Fn * × *
19 17 18 ax-mp . Fn * × *
20 peano2rem x x 1
21 20 rexrd x x 1 *
22 peano2re x x + 1
23 22 rexrd x x + 1 *
24 fnovrn . Fn * × * x 1 * x + 1 * x 1 x + 1 ran .
25 19 21 23 24 mp3an2i x x 1 x + 1 ran .
26 16 25 eqeltrd x x ball D 1 ran .
27 13 26 syl v ran . x v x ball D 1 ran .
28 simpr v ran . x v x v
29 1rp 1 +
30 blcntr D ∞Met x 1 + x x ball D 1
31 3 29 30 mp3an13 x x x ball D 1
32 13 31 syl v ran . x v x x ball D 1
33 28 32 elind v ran . x v x v x ball D 1
34 basis2 ran . TopBases v ran . x ball D 1 ran . x v x ball D 1 z ran . x z z v x ball D 1
35 11 12 27 33 34 syl22anc v ran . x v z ran . x z z v x ball D 1
36 ovelrn . Fn * × * z ran . a * b * z = a b
37 19 36 ax-mp z ran . a * b * z = a b
38 eleq2 z = a b x z x a b
39 sseq1 z = a b z v x ball D 1 a b v x ball D 1
40 38 39 anbi12d z = a b x z z v x ball D 1 x a b a b v x ball D 1
41 inss2 v x ball D 1 x ball D 1
42 sstr a b v x ball D 1 v x ball D 1 x ball D 1 a b x ball D 1
43 41 42 mpan2 a b v x ball D 1 a b x ball D 1
44 43 adantl x a b a b v x ball D 1 a b x ball D 1
45 elioore x a b x
46 45 adantr x a b a b v x ball D 1 x
47 46 16 syl x a b a b v x ball D 1 x ball D 1 = x 1 x + 1
48 44 47 sseqtrd x a b a b v x ball D 1 a b x 1 x + 1
49 dfss a b x 1 x + 1 a b = a b x 1 x + 1
50 48 49 sylib x a b a b v x ball D 1 a b = a b x 1 x + 1
51 eliooxr x a b a * b *
52 21 23 jca x x 1 * x + 1 *
53 45 52 syl x a b x 1 * x + 1 *
54 iooin a * b * x 1 * x + 1 * a b x 1 x + 1 = if a x 1 x 1 a if b x + 1 b x + 1
55 51 53 54 syl2anc x a b a b x 1 x + 1 = if a x 1 x 1 a if b x + 1 b x + 1
56 55 adantr x a b a b v x ball D 1 a b x 1 x + 1 = if a x 1 x 1 a if b x + 1 b x + 1
57 50 56 eqtrd x a b a b v x ball D 1 a b = if a x 1 x 1 a if b x + 1 b x + 1
58 mnfxr −∞ *
59 58 a1i x a b a b v x ball D 1 −∞ *
60 46 21 syl x a b a b v x ball D 1 x 1 *
61 51 adantr x a b a b v x ball D 1 a * b *
62 61 simpld x a b a b v x ball D 1 a *
63 60 62 ifcld x a b a b v x ball D 1 if a x 1 x 1 a *
64 61 simprd x a b a b v x ball D 1 b *
65 46 22 syl x a b a b v x ball D 1 x + 1
66 65 rexrd x a b a b v x ball D 1 x + 1 *
67 64 66 ifcld x a b a b v x ball D 1 if b x + 1 b x + 1 *
68 45 20 syl x a b x 1
69 68 adantr x a b a b v x ball D 1 x 1
70 69 mnfltd x a b a b v x ball D 1 −∞ < x 1
71 xrmax2 a * x 1 * x 1 if a x 1 x 1 a
72 62 60 71 syl2anc x a b a b v x ball D 1 x 1 if a x 1 x 1 a
73 59 60 63 70 72 xrltletrd x a b a b v x ball D 1 −∞ < if a x 1 x 1 a
74 simpl x a b a b v x ball D 1 x a b
75 74 57 eleqtrd x a b a b v x ball D 1 x if a x 1 x 1 a if b x + 1 b x + 1
76 eliooxr x if a x 1 x 1 a if b x + 1 b x + 1 if a x 1 x 1 a * if b x + 1 b x + 1 *
77 ne0i x if a x 1 x 1 a if b x + 1 b x + 1 if a x 1 x 1 a if b x + 1 b x + 1
78 ioon0 if a x 1 x 1 a * if b x + 1 b x + 1 * if a x 1 x 1 a if b x + 1 b x + 1 if a x 1 x 1 a < if b x + 1 b x + 1
79 77 78 syl5ib if a x 1 x 1 a * if b x + 1 b x + 1 * x if a x 1 x 1 a if b x + 1 b x + 1 if a x 1 x 1 a < if b x + 1 b x + 1
80 76 79 mpcom x if a x 1 x 1 a if b x + 1 b x + 1 if a x 1 x 1 a < if b x + 1 b x + 1
81 75 80 syl x a b a b v x ball D 1 if a x 1 x 1 a < if b x + 1 b x + 1
82 xrre2 −∞ * if a x 1 x 1 a * if b x + 1 b x + 1 * −∞ < if a x 1 x 1 a if a x 1 x 1 a < if b x + 1 b x + 1 if a x 1 x 1 a
83 59 63 67 73 81 82 syl32anc x a b a b v x ball D 1 if a x 1 x 1 a
84 mnfle if a x 1 x 1 a * −∞ if a x 1 x 1 a
85 63 84 syl x a b a b v x ball D 1 −∞ if a x 1 x 1 a
86 59 63 67 85 81 xrlelttrd x a b a b v x ball D 1 −∞ < if b x + 1 b x + 1
87 xrmin2 b * x + 1 * if b x + 1 b x + 1 x + 1
88 64 66 87 syl2anc x a b a b v x ball D 1 if b x + 1 b x + 1 x + 1
89 xrre if b x + 1 b x + 1 * x + 1 −∞ < if b x + 1 b x + 1 if b x + 1 b x + 1 x + 1 if b x + 1 b x + 1
90 67 65 86 88 89 syl22anc x a b a b v x ball D 1 if b x + 1 b x + 1
91 1 ioo2blex if a x 1 x 1 a if b x + 1 b x + 1 if a x 1 x 1 a if b x + 1 b x + 1 ran ball D
92 83 90 91 syl2anc x a b a b v x ball D 1 if a x 1 x 1 a if b x + 1 b x + 1 ran ball D
93 57 92 eqeltrd x a b a b v x ball D 1 a b ran ball D
94 inss1 v x ball D 1 v
95 sstr a b v x ball D 1 v x ball D 1 v a b v
96 94 95 mpan2 a b v x ball D 1 a b v
97 96 adantl x a b a b v x ball D 1 a b v
98 sseq1 z = a b z v a b v
99 38 98 anbi12d z = a b x z z v x a b a b v
100 99 rspcev a b ran ball D x a b a b v z ran ball D x z z v
101 93 74 97 100 syl12anc x a b a b v x ball D 1 z ran ball D x z z v
102 blssex D ∞Met x z ran ball D x z z v y + x ball D y v
103 3 46 102 sylancr x a b a b v x ball D 1 z ran ball D x z z v y + x ball D y v
104 101 103 mpbid x a b a b v x ball D 1 y + x ball D y v
105 40 104 syl6bi z = a b x z z v x ball D 1 y + x ball D y v
106 105 a1i a * b * z = a b x z z v x ball D 1 y + x ball D y v
107 106 rexlimivv a * b * z = a b x z z v x ball D 1 y + x ball D y v
108 107 imp a * b * z = a b x z z v x ball D 1 y + x ball D y v
109 37 108 sylanb z ran . x z z v x ball D 1 y + x ball D y v
110 109 rexlimiva z ran . x z z v x ball D 1 y + x ball D y v
111 35 110 syl v ran . x v y + x ball D y v
112 111 ralrimiva v ran . x v y + x ball D y v
113 2 elmopn2 D ∞Met v J v x v y + x ball D y v
114 3 113 ax-mp v J v x v y + x ball D y v
115 9 112 114 sylanbrc v ran . v J
116 115 ssriv ran . J
117 116 5 sseqtri ran . topGen ran ball D
118 2basgen ran ball D ran . ran . topGen ran ball D topGen ran ball D = topGen ran .
119 6 117 118 mp2an topGen ran ball D = topGen ran .
120 5 119 eqtr2i topGen ran . = J