Metamath Proof Explorer


Theorem tgioo

Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypotheses remet.1 D=abs2
tgioo.2 J=MetOpenD
Assertion tgioo topGenran.=J

Proof

Step Hyp Ref Expression
1 remet.1 D=abs2
2 tgioo.2 J=MetOpenD
3 1 rexmet D∞Met
4 2 mopnval D∞MetJ=topGenranballD
5 3 4 ax-mp J=topGenranballD
6 1 blssioo ranballDran.
7 elssuni vran.vran.
8 unirnioo =ran.
9 7 8 sseqtrrdi vran.v
10 retopbas ran.TopBases
11 10 a1i vran.xvran.TopBases
12 simpl vran.xvvran.
13 9 sselda vran.xvx
14 1re 1
15 1 bl2ioo x1xballD1=x1x+1
16 14 15 mpan2 xxballD1=x1x+1
17 ioof .:*×*𝒫
18 ffn .:*×*𝒫.Fn*×*
19 17 18 ax-mp .Fn*×*
20 peano2rem xx1
21 20 rexrd xx1*
22 peano2re xx+1
23 22 rexrd xx+1*
24 fnovrn .Fn*×*x1*x+1*x1x+1ran.
25 19 21 23 24 mp3an2i xx1x+1ran.
26 16 25 eqeltrd xxballD1ran.
27 13 26 syl vran.xvxballD1ran.
28 simpr vran.xvxv
29 1rp 1+
30 blcntr D∞Metx1+xxballD1
31 3 29 30 mp3an13 xxxballD1
32 13 31 syl vran.xvxxballD1
33 28 32 elind vran.xvxvxballD1
34 basis2 ran.TopBasesvran.xballD1ran.xvxballD1zran.xzzvxballD1
35 11 12 27 33 34 syl22anc vran.xvzran.xzzvxballD1
36 ovelrn .Fn*×*zran.a*b*z=ab
37 19 36 ax-mp zran.a*b*z=ab
38 eleq2 z=abxzxab
39 sseq1 z=abzvxballD1abvxballD1
40 38 39 anbi12d z=abxzzvxballD1xababvxballD1
41 inss2 vxballD1xballD1
42 sstr abvxballD1vxballD1xballD1abxballD1
43 41 42 mpan2 abvxballD1abxballD1
44 43 adantl xababvxballD1abxballD1
45 elioore xabx
46 45 adantr xababvxballD1x
47 46 16 syl xababvxballD1xballD1=x1x+1
48 44 47 sseqtrd xababvxballD1abx1x+1
49 dfss abx1x+1ab=abx1x+1
50 48 49 sylib xababvxballD1ab=abx1x+1
51 eliooxr xaba*b*
52 21 23 jca xx1*x+1*
53 45 52 syl xabx1*x+1*
54 iooin a*b*x1*x+1*abx1x+1=ifax1x1aifbx+1bx+1
55 51 53 54 syl2anc xababx1x+1=ifax1x1aifbx+1bx+1
56 55 adantr xababvxballD1abx1x+1=ifax1x1aifbx+1bx+1
57 50 56 eqtrd xababvxballD1ab=ifax1x1aifbx+1bx+1
58 mnfxr −∞*
59 58 a1i xababvxballD1−∞*
60 46 21 syl xababvxballD1x1*
61 51 adantr xababvxballD1a*b*
62 61 simpld xababvxballD1a*
63 60 62 ifcld xababvxballD1ifax1x1a*
64 61 simprd xababvxballD1b*
65 46 22 syl xababvxballD1x+1
66 65 rexrd xababvxballD1x+1*
67 64 66 ifcld xababvxballD1ifbx+1bx+1*
68 45 20 syl xabx1
69 68 adantr xababvxballD1x1
70 69 mnfltd xababvxballD1−∞<x1
71 xrmax2 a*x1*x1ifax1x1a
72 62 60 71 syl2anc xababvxballD1x1ifax1x1a
73 59 60 63 70 72 xrltletrd xababvxballD1−∞<ifax1x1a
74 simpl xababvxballD1xab
75 74 57 eleqtrd xababvxballD1xifax1x1aifbx+1bx+1
76 eliooxr xifax1x1aifbx+1bx+1ifax1x1a*ifbx+1bx+1*
77 ne0i xifax1x1aifbx+1bx+1ifax1x1aifbx+1bx+1
78 ioon0 ifax1x1a*ifbx+1bx+1*ifax1x1aifbx+1bx+1ifax1x1a<ifbx+1bx+1
79 77 78 imbitrid ifax1x1a*ifbx+1bx+1*xifax1x1aifbx+1bx+1ifax1x1a<ifbx+1bx+1
80 76 79 mpcom xifax1x1aifbx+1bx+1ifax1x1a<ifbx+1bx+1
81 75 80 syl xababvxballD1ifax1x1a<ifbx+1bx+1
82 xrre2 −∞*ifax1x1a*ifbx+1bx+1*−∞<ifax1x1aifax1x1a<ifbx+1bx+1ifax1x1a
83 59 63 67 73 81 82 syl32anc xababvxballD1ifax1x1a
84 mnfle ifax1x1a*−∞ifax1x1a
85 63 84 syl xababvxballD1−∞ifax1x1a
86 59 63 67 85 81 xrlelttrd xababvxballD1−∞<ifbx+1bx+1
87 xrmin2 b*x+1*ifbx+1bx+1x+1
88 64 66 87 syl2anc xababvxballD1ifbx+1bx+1x+1
89 xrre ifbx+1bx+1*x+1−∞<ifbx+1bx+1ifbx+1bx+1x+1ifbx+1bx+1
90 67 65 86 88 89 syl22anc xababvxballD1ifbx+1bx+1
91 1 ioo2blex ifax1x1aifbx+1bx+1ifax1x1aifbx+1bx+1ranballD
92 83 90 91 syl2anc xababvxballD1ifax1x1aifbx+1bx+1ranballD
93 57 92 eqeltrd xababvxballD1abranballD
94 inss1 vxballD1v
95 sstr abvxballD1vxballD1vabv
96 94 95 mpan2 abvxballD1abv
97 96 adantl xababvxballD1abv
98 sseq1 z=abzvabv
99 38 98 anbi12d z=abxzzvxababv
100 99 rspcev abranballDxababvzranballDxzzv
101 93 74 97 100 syl12anc xababvxballD1zranballDxzzv
102 blssex D∞MetxzranballDxzzvy+xballDyv
103 3 46 102 sylancr xababvxballD1zranballDxzzvy+xballDyv
104 101 103 mpbid xababvxballD1y+xballDyv
105 40 104 syl6bi z=abxzzvxballD1y+xballDyv
106 105 a1i a*b*z=abxzzvxballD1y+xballDyv
107 106 rexlimivv a*b*z=abxzzvxballD1y+xballDyv
108 107 imp a*b*z=abxzzvxballD1y+xballDyv
109 37 108 sylanb zran.xzzvxballD1y+xballDyv
110 109 rexlimiva zran.xzzvxballD1y+xballDyv
111 35 110 syl vran.xvy+xballDyv
112 111 ralrimiva vran.xvy+xballDyv
113 2 elmopn2 D∞MetvJvxvy+xballDyv
114 3 113 ax-mp vJvxvy+xballDyv
115 9 112 114 sylanbrc vran.vJ
116 115 ssriv ran.J
117 116 5 sseqtri ran.topGenranballD
118 2basgen ranballDran.ran.topGenranballDtopGenranballD=topGenran.
119 6 117 118 mp2an topGenranballD=topGenran.
120 5 119 eqtr2i topGenran.=J