Metamath Proof Explorer


Theorem tgioo2

Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis tgioo2.1 J = TopOpen fld
Assertion tgioo2 topGen ran . = J 𝑡

Proof

Step Hyp Ref Expression
1 tgioo2.1 J = TopOpen fld
2 eqid abs 2 = abs 2
3 cnxmet abs ∞Met
4 ax-resscn
5 1 cnfldtopn J = MetOpen abs
6 eqid MetOpen abs 2 = MetOpen abs 2
7 2 5 6 metrest abs ∞Met J 𝑡 = MetOpen abs 2
8 3 4 7 mp2an J 𝑡 = MetOpen abs 2
9 2 8 tgioo topGen ran . = J 𝑡