Metamath Proof Explorer


Theorem tgioo3

Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014) (Revised by Thierry Arnoux, 3-Jul-2019)

Ref Expression
Hypothesis tgioo3.1 J=TopOpenfld
Assertion tgioo3 topGenran.=J

Proof

Step Hyp Ref Expression
1 tgioo3.1 J=TopOpenfld
2 eqid fld𝑠=fld𝑠
3 eqid TopOpenfld=TopOpenfld
4 2 3 resstopn TopOpenfld𝑡=TopOpenfld𝑠
5 3 tgioo2 topGenran.=TopOpenfld𝑡
6 df-refld fld=fld𝑠
7 6 fveq2i TopOpenfld=TopOpenfld𝑠
8 1 7 eqtri J=TopOpenfld𝑠
9 4 5 8 3eqtr4i topGenran.=J