Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014) (Revised by Thierry Arnoux, 3-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tgioo3.1 | |
|
Assertion | tgioo3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgioo3.1 | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | resstopn | |
5 | 3 | tgioo2 | |
6 | df-refld | |
|
7 | 6 | fveq2i | |
8 | 1 7 | eqtri | |
9 | 4 5 8 | 3eqtr4i | |