Metamath Proof Explorer


Theorem tgjustc2

Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023)

Ref Expression
Hypotheses tgjustc2.p P = Base G
tgjustc2.d R Er P × P
Assertion tgjustc2 d d Fn P × P w P x P y P z P w x R y z w d x = y d z

Proof

Step Hyp Ref Expression
1 tgjustc2.p P = Base G
2 tgjustc2.d R Er P × P
3 1 fvexi P V
4 3 3 xpex P × P V
5 tgjustr P × P V R Er P × P d d Fn P × P u P × P v P × P u R v d u = d v
6 4 2 5 mp2an d d Fn P × P u P × P v P × P u R v d u = d v
7 simplrl u P × P v P × P u R v d u = d v w P x P y P z P w P
8 simplrr u P × P v P × P u R v d u = d v w P x P y P z P x P
9 7 8 opelxpd u P × P v P × P u R v d u = d v w P x P y P z P w x P × P
10 simprl u P × P v P × P u R v d u = d v w P x P y P z P y P
11 simprr u P × P v P × P u R v d u = d v w P x P y P z P z P
12 10 11 opelxpd u P × P v P × P u R v d u = d v w P x P y P z P y z P × P
13 simpll u P × P v P × P u R v d u = d v w P x P y P z P u P × P v P × P u R v d u = d v
14 breq1 u = w x u R v w x R v
15 fveq2 u = w x d u = d w x
16 df-ov w d x = d w x
17 15 16 syl6eqr u = w x d u = w d x
18 17 eqeq1d u = w x d u = d v w d x = d v
19 14 18 bibi12d u = w x u R v d u = d v w x R v w d x = d v
20 breq2 v = y z w x R v w x R y z
21 fveq2 v = y z d v = d y z
22 df-ov y d z = d y z
23 21 22 syl6eqr v = y z d v = y d z
24 23 eqeq2d v = y z w d x = d v w d x = y d z
25 20 24 bibi12d v = y z w x R v w d x = d v w x R y z w d x = y d z
26 19 25 rspc2va w x P × P y z P × P u P × P v P × P u R v d u = d v w x R y z w d x = y d z
27 9 12 13 26 syl21anc u P × P v P × P u R v d u = d v w P x P y P z P w x R y z w d x = y d z
28 27 ralrimivva u P × P v P × P u R v d u = d v w P x P y P z P w x R y z w d x = y d z
29 28 ralrimivva u P × P v P × P u R v d u = d v w P x P y P z P w x R y z w d x = y d z
30 29 anim2i d Fn P × P u P × P v P × P u R v d u = d v d Fn P × P w P x P y P z P w x R y z w d x = y d z
31 6 30 eximii d d Fn P × P w P x P y P z P w x R y z w d x = y d z