Metamath Proof Explorer


Theorem tgldim0cgr

Description: In dimension zero, any two pairs of points are congruent. (Contributed by Thierry Arnoux, 12-Apr-2019)

Ref Expression
Hypotheses tgbtwndiff.p P = Base G
tgbtwndiff.d - ˙ = dist G
tgbtwndiff.i I = Itv G
tgbtwndiff.g φ G 𝒢 Tarski
tgbtwndiff.a φ A P
tgbtwndiff.b φ B P
tgldim0itv.c φ C P
tgldim0itv.p φ P = 1
tgldim0itv.d φ D P
Assertion tgldim0cgr φ A - ˙ B = C - ˙ D

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p P = Base G
2 tgbtwndiff.d - ˙ = dist G
3 tgbtwndiff.i I = Itv G
4 tgbtwndiff.g φ G 𝒢 Tarski
5 tgbtwndiff.a φ A P
6 tgbtwndiff.b φ B P
7 tgldim0itv.c φ C P
8 tgldim0itv.p φ P = 1
9 tgldim0itv.d φ D P
10 1 8 5 7 tgldim0eq φ A = C
11 1 8 6 9 tgldim0eq φ B = D
12 10 11 oveq12d φ A - ˙ B = C - ˙ D