Metamath Proof Explorer


Theorem tgldim0eq

Description: In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 11-Apr-2019)

Ref Expression
Hypotheses tgldim0.g P = E F
tgldim0.p φ P = 1
tgldim0.a φ A P
tgldim0.b φ B P
Assertion tgldim0eq φ A = B

Proof

Step Hyp Ref Expression
1 tgldim0.g P = E F
2 tgldim0.p φ P = 1
3 tgldim0.a φ A P
4 tgldim0.b φ B P
5 1 fvexi P V
6 hash1snb P V P = 1 x P = x
7 5 6 ax-mp P = 1 x P = x
8 2 7 sylib φ x P = x
9 3 adantr φ P = x A P
10 simpr φ P = x P = x
11 9 10 eleqtrd φ P = x A x
12 elsni A x A = x
13 11 12 syl φ P = x A = x
14 4 adantr φ P = x B P
15 14 10 eleqtrd φ P = x B x
16 elsni B x B = x
17 15 16 syl φ P = x B = x
18 13 17 eqtr4d φ P = x A = B
19 8 18 exlimddv φ A = B