Metamath Proof Explorer
Description: In dimension zero, any two points are equal. (Contributed by Thierry
Arnoux, 12-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tgbtwndiff.p |
|
|
|
tgbtwndiff.d |
|
|
|
tgbtwndiff.i |
|
|
|
tgbtwndiff.g |
|
|
|
tgbtwndiff.a |
|
|
|
tgbtwndiff.b |
|
|
|
tgldim0itv.c |
|
|
|
tgldim0itv.p |
|
|
Assertion |
tgldim0itv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwndiff.p |
|
2 |
|
tgbtwndiff.d |
|
3 |
|
tgbtwndiff.i |
|
4 |
|
tgbtwndiff.g |
|
5 |
|
tgbtwndiff.a |
|
6 |
|
tgbtwndiff.b |
|
7 |
|
tgldim0itv.c |
|
8 |
|
tgldim0itv.p |
|
9 |
1 8 5 6
|
tgldim0eq |
|
10 |
1 2 3 4 6 7
|
tgbtwntriv1 |
|
11 |
9 10
|
eqeltrd |
|