Metamath Proof Explorer
		
		
		
		Description:  In dimension zero, any two points are equal.  (Contributed by Thierry
         Arnoux, 12-Apr-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						tgbtwndiff.p | 
						   | 
					
					
						 | 
						 | 
						tgbtwndiff.d | 
						   | 
					
					
						 | 
						 | 
						tgbtwndiff.i | 
						   | 
					
					
						 | 
						 | 
						tgbtwndiff.g | 
						   | 
					
					
						 | 
						 | 
						tgbtwndiff.a | 
						   | 
					
					
						 | 
						 | 
						tgbtwndiff.b | 
						   | 
					
					
						 | 
						 | 
						tgldim0itv.c | 
						   | 
					
					
						 | 
						 | 
						tgldim0itv.p | 
						   | 
					
				
					 | 
					Assertion | 
					tgldim0itv | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgbtwndiff.p | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							tgbtwndiff.d | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							tgbtwndiff.i | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							tgbtwndiff.g | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							tgbtwndiff.a | 
							   | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwndiff.b | 
							   | 
						
						
							| 7 | 
							
								
							 | 
							tgldim0itv.c | 
							   | 
						
						
							| 8 | 
							
								
							 | 
							tgldim0itv.p | 
							   | 
						
						
							| 9 | 
							
								1 8 5 6
							 | 
							tgldim0eq | 
							   | 
						
						
							| 10 | 
							
								1 2 3 4 6 7
							 | 
							tgbtwntriv1 | 
							   | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqeltrd | 
							   |