Metamath Proof Explorer


Theorem tgldim0itv

Description: In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019)

Ref Expression
Hypotheses tgbtwndiff.p P = Base G
tgbtwndiff.d - ˙ = dist G
tgbtwndiff.i I = Itv G
tgbtwndiff.g φ G 𝒢 Tarski
tgbtwndiff.a φ A P
tgbtwndiff.b φ B P
tgldim0itv.c φ C P
tgldim0itv.p φ P = 1
Assertion tgldim0itv φ A B I C

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p P = Base G
2 tgbtwndiff.d - ˙ = dist G
3 tgbtwndiff.i I = Itv G
4 tgbtwndiff.g φ G 𝒢 Tarski
5 tgbtwndiff.a φ A P
6 tgbtwndiff.b φ B P
7 tgldim0itv.c φ C P
8 tgldim0itv.p φ P = 1
9 1 8 5 6 tgldim0eq φ A = B
10 1 2 3 4 6 7 tgbtwntriv1 φ B B I C
11 9 10 eqeltrd φ A B I C