Metamath Proof Explorer


Theorem tglinecom

Description: Commutativity law for lines. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
tglineelsb2.1 φ P B
tglineelsb2.2 φ Q B
tglineelsb2.4 φ P Q
Assertion tglinecom φ P L Q = Q L P

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 tglineelsb2.1 φ P B
6 tglineelsb2.2 φ Q B
7 tglineelsb2.4 φ P Q
8 4 adantr φ x P L Q G 𝒢 Tarski
9 6 adantr φ x P L Q Q B
10 5 adantr φ x P L Q P B
11 1 3 2 4 5 6 7 tglnssp φ P L Q B
12 11 sselda φ x P L Q x B
13 7 necomd φ Q P
14 13 adantr φ x P L Q Q P
15 simpr φ x P L Q x P L Q
16 1 2 3 8 9 10 12 14 15 lncom φ x P L Q x Q L P
17 4 adantr φ x Q L P G 𝒢 Tarski
18 5 adantr φ x Q L P P B
19 6 adantr φ x Q L P Q B
20 1 3 2 4 6 5 13 tglnssp φ Q L P B
21 20 sselda φ x Q L P x B
22 7 adantr φ x Q L P P Q
23 simpr φ x Q L P x Q L P
24 1 2 3 17 18 19 21 22 23 lncom φ x Q L P x P L Q
25 16 24 impbida φ x P L Q x Q L P
26 25 eqrdv φ P L Q = Q L P