Metamath Proof Explorer


Theorem tglineelsb2

Description: If S lies on PQ , then PQ = PS . Theorem 6.16 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tglineelsb2.1 φPB
tglineelsb2.2 φQB
tglineelsb2.4 φPQ
tglineelsb2.3 φSB
tglineelsb2.5 φSP
tglineelsb2.6 φSPLQ
Assertion tglineelsb2 φPLQ=PLS

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tglineelsb2.1 φPB
6 tglineelsb2.2 φQB
7 tglineelsb2.4 φPQ
8 tglineelsb2.3 φSB
9 tglineelsb2.5 φSP
10 tglineelsb2.6 φSPLQ
11 4 adantr φxPLQG𝒢Tarski
12 5 adantr φxPLQPB
13 8 adantr φxPLQSB
14 9 necomd φPS
15 14 adantr φxPLQPS
16 6 adantr φxPLQQB
17 7 necomd φQP
18 17 adantr φxPLQQP
19 10 adantr φxPLQSPLQ
20 1 2 3 11 16 12 13 18 19 lncom φxPLQSQLP
21 1 2 3 11 12 13 16 15 20 18 lnrot1 φxPLQQPLS
22 1 3 2 4 5 6 7 tglnssp φPLQB
23 22 sselda φxPLQxB
24 simpr φxPLQxPLQ
25 1 2 3 11 12 13 15 16 18 21 23 24 tglineeltr φxPLQxPLS
26 4 adantr φxPLSG𝒢Tarski
27 5 adantr φxPLSPB
28 6 adantr φxPLSQB
29 7 adantr φxPLSPQ
30 8 adantr φxPLSSB
31 9 adantr φxPLSSP
32 10 adantr φxPLSSPLQ
33 1 3 2 4 5 8 14 tglnssp φPLSB
34 33 sselda φxPLSxB
35 simpr φxPLSxPLS
36 1 2 3 26 27 28 29 30 31 32 34 35 tglineeltr φxPLSxPLQ
37 25 36 impbida φxPLQxPLS
38 37 eqrdv φPLQ=PLS