Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
|
2 |
|
tglineelsb2.i |
|
3 |
|
tglineelsb2.l |
|
4 |
|
tglineelsb2.g |
|
5 |
|
tglineelsb2.1 |
|
6 |
|
tglineelsb2.2 |
|
7 |
|
tglineelsb2.4 |
|
8 |
|
tglineelsb2.3 |
|
9 |
|
tglineelsb2.5 |
|
10 |
|
tglineelsb2.6 |
|
11 |
4
|
adantr |
|
12 |
5
|
adantr |
|
13 |
8
|
adantr |
|
14 |
9
|
necomd |
|
15 |
14
|
adantr |
|
16 |
6
|
adantr |
|
17 |
7
|
necomd |
|
18 |
17
|
adantr |
|
19 |
10
|
adantr |
|
20 |
1 2 3 11 16 12 13 18 19
|
lncom |
|
21 |
1 2 3 11 12 13 16 15 20 18
|
lnrot1 |
|
22 |
1 3 2 4 5 6 7
|
tglnssp |
|
23 |
22
|
sselda |
|
24 |
|
simpr |
|
25 |
1 2 3 11 12 13 15 16 18 21 23 24
|
tglineeltr |
|
26 |
4
|
adantr |
|
27 |
5
|
adantr |
|
28 |
6
|
adantr |
|
29 |
7
|
adantr |
|
30 |
8
|
adantr |
|
31 |
9
|
adantr |
|
32 |
10
|
adantr |
|
33 |
1 3 2 4 5 8 14
|
tglnssp |
|
34 |
33
|
sselda |
|
35 |
|
simpr |
|
36 |
1 2 3 26 27 28 29 30 31 32 34 35
|
tglineeltr |
|
37 |
25 36
|
impbida |
|
38 |
37
|
eqrdv |
|