Description: If S lies on PQ , then PQ = PS . Theorem 6.16 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglineelsb2.p | |
|
tglineelsb2.i | |
||
tglineelsb2.l | |
||
tglineelsb2.g | |
||
tglineelsb2.1 | |
||
tglineelsb2.2 | |
||
tglineelsb2.4 | |
||
tglineelsb2.3 | |
||
tglineelsb2.5 | |
||
tglineelsb2.6 | |
||
Assertion | tglineelsb2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | |
|
2 | tglineelsb2.i | |
|
3 | tglineelsb2.l | |
|
4 | tglineelsb2.g | |
|
5 | tglineelsb2.1 | |
|
6 | tglineelsb2.2 | |
|
7 | tglineelsb2.4 | |
|
8 | tglineelsb2.3 | |
|
9 | tglineelsb2.5 | |
|
10 | tglineelsb2.6 | |
|
11 | 4 | adantr | |
12 | 5 | adantr | |
13 | 8 | adantr | |
14 | 9 | necomd | |
15 | 14 | adantr | |
16 | 6 | adantr | |
17 | 7 | necomd | |
18 | 17 | adantr | |
19 | 10 | adantr | |
20 | 1 2 3 11 16 12 13 18 19 | lncom | |
21 | 1 2 3 11 12 13 16 15 20 18 | lnrot1 | |
22 | 1 3 2 4 5 6 7 | tglnssp | |
23 | 22 | sselda | |
24 | simpr | |
|
25 | 1 2 3 11 12 13 15 16 18 21 23 24 | tglineeltr | |
26 | 4 | adantr | |
27 | 5 | adantr | |
28 | 6 | adantr | |
29 | 7 | adantr | |
30 | 8 | adantr | |
31 | 9 | adantr | |
32 | 10 | adantr | |
33 | 1 3 2 4 5 8 14 | tglnssp | |
34 | 33 | sselda | |
35 | simpr | |
|
36 | 1 2 3 26 27 28 29 30 31 32 34 35 | tglineeltr | |
37 | 25 36 | impbida | |
38 | 37 | eqrdv | |