Description: Two distinct lines intersect in at most one point, variation. Theorem 6.21 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglineintmo.p | |
|
tglineintmo.i | |
||
tglineintmo.l | |
||
tglineintmo.g | |
||
tglineintmo.a | |
||
tglineintmo.b | |
||
tglineintmo.c | |
||
tglineineq.x | |
||
tglineineq.y | |
||
Assertion | tglineineq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | |
|
2 | tglineintmo.i | |
|
3 | tglineintmo.l | |
|
4 | tglineintmo.g | |
|
5 | tglineintmo.a | |
|
6 | tglineintmo.b | |
|
7 | tglineintmo.c | |
|
8 | tglineineq.x | |
|
9 | tglineineq.y | |
|
10 | 1 2 3 4 5 6 7 | tglineintmo | |
11 | elin | |
|
12 | 8 11 | sylib | |
13 | elin | |
|
14 | 9 13 | sylib | |
15 | eleq1 | |
|
16 | eleq1 | |
|
17 | 15 16 | anbi12d | |
18 | eleq1 | |
|
19 | eleq1 | |
|
20 | 18 19 | anbi12d | |
21 | 17 20 | moi | |
22 | 8 9 10 12 14 21 | syl212anc | |