Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
|
2 |
|
tglineintmo.i |
|
3 |
|
tglineintmo.l |
|
4 |
|
tglineintmo.g |
|
5 |
|
tglineintmo.a |
|
6 |
|
tglineintmo.b |
|
7 |
|
tglineintmo.c |
|
8 |
4
|
ad2antrr |
|
9 |
|
elssuni |
|
10 |
5 9
|
syl |
|
11 |
1 3 2
|
tglnunirn |
|
12 |
4 11
|
syl |
|
13 |
10 12
|
sstrd |
|
14 |
13
|
ad2antrr |
|
15 |
|
simplrl |
|
16 |
15
|
simpld |
|
17 |
14 16
|
sseldd |
|
18 |
|
simplrr |
|
19 |
18
|
simpld |
|
20 |
14 19
|
sseldd |
|
21 |
|
simpr |
|
22 |
5
|
ad2antrr |
|
23 |
1 2 3 8 17 20 21 21 22 16 19
|
tglinethru |
|
24 |
6
|
ad2antrr |
|
25 |
15
|
simprd |
|
26 |
18
|
simprd |
|
27 |
1 2 3 8 17 20 21 21 24 25 26
|
tglinethru |
|
28 |
23 27
|
eqtr4d |
|
29 |
7
|
ad2antrr |
|
30 |
29
|
neneqd |
|
31 |
28 30
|
pm2.65da |
|
32 |
|
nne |
|
33 |
31 32
|
sylib |
|
34 |
33
|
ex |
|
35 |
34
|
alrimivv |
|
36 |
|
eleq1w |
|
37 |
|
eleq1w |
|
38 |
36 37
|
anbi12d |
|
39 |
38
|
mo4 |
|
40 |
35 39
|
sylibr |
|