Metamath Proof Explorer


Theorem tglineneq

Description: Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019)

Ref Expression
Hypotheses tglineintmo.p P = Base G
tglineintmo.i I = Itv G
tglineintmo.l L = Line 𝒢 G
tglineintmo.g φ G 𝒢 Tarski
tglineinteq.a φ A P
tglineinteq.b φ B P
tglineinteq.c φ C P
tglineinteq.d φ D P
tglineinteq.e φ ¬ A B L C B = C
Assertion tglineneq φ A L B C L D

Proof

Step Hyp Ref Expression
1 tglineintmo.p P = Base G
2 tglineintmo.i I = Itv G
3 tglineintmo.l L = Line 𝒢 G
4 tglineintmo.g φ G 𝒢 Tarski
5 tglineinteq.a φ A P
6 tglineinteq.b φ B P
7 tglineinteq.c φ C P
8 tglineinteq.d φ D P
9 tglineinteq.e φ ¬ A B L C B = C
10 1 2 3 4 5 6 7 9 ncolne1 φ A B
11 1 2 3 4 5 6 10 tglinerflx1 φ A A L B
12 simplr φ C = D A C L D C = D
13 4 adantr φ A C L D G 𝒢 Tarski
14 7 adantr φ A C L D C P
15 8 adantr φ A C L D D P
16 simpr φ A C L D A C L D
17 1 3 2 13 14 15 16 tglngne φ A C L D C D
18 17 adantlr φ C = D A C L D C D
19 18 neneqd φ C = D A C L D ¬ C = D
20 12 19 pm2.65da φ C = D ¬ A C L D
21 nelne1 A A L B ¬ A C L D A L B C L D
22 11 20 21 syl2an2r φ C = D A L B C L D
23 4 ad2antrr φ C D A L B = C L D G 𝒢 Tarski
24 6 ad2antrr φ C D A L B = C L D B P
25 7 ad2antrr φ C D A L B = C L D C P
26 5 ad2antrr φ C D A L B = C L D A P
27 pm2.46 ¬ A B L C B = C ¬ B = C
28 9 27 syl φ ¬ B = C
29 28 neqned φ B C
30 29 ad2antrr φ C D A L B = C L D B C
31 8 ad2antrr φ C D A L B = C L D D P
32 simplr φ C D A L B = C L D C D
33 1 2 3 23 25 31 32 tglinerflx1 φ C D A L B = C L D C C L D
34 simpr φ C D A L B = C L D A L B = C L D
35 33 34 eleqtrrd φ C D A L B = C L D C A L B
36 1 3 2 23 26 24 35 tglngne φ C D A L B = C L D A B
37 1 2 3 23 24 25 26 30 35 36 lnrot1 φ C D A L B = C L D A B L C
38 37 orcd φ C D A L B = C L D A B L C B = C
39 9 ad2antrr φ C D A L B = C L D ¬ A B L C B = C
40 38 39 pm2.65da φ C D ¬ A L B = C L D
41 40 neqned φ C D A L B C L D
42 22 41 pm2.61dane φ A L B C L D