Metamath Proof Explorer
Description: Reflexivity law for line membership. Part of theorem 6.17 of
Schwabhauser p. 45. (Contributed by Thierry Arnoux, 17-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tglineelsb2.p |
|
|
|
tglineelsb2.i |
|
|
|
tglineelsb2.l |
|
|
|
tglineelsb2.g |
|
|
|
tglineelsb2.1 |
|
|
|
tglineelsb2.2 |
|
|
|
tglineelsb2.4 |
|
|
Assertion |
tglinerflx1 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
|
2 |
|
tglineelsb2.i |
|
3 |
|
tglineelsb2.l |
|
4 |
|
tglineelsb2.g |
|
5 |
|
tglineelsb2.1 |
|
6 |
|
tglineelsb2.2 |
|
7 |
|
tglineelsb2.4 |
|
8 |
|
eqid |
|
9 |
1 8 2 4 5 6
|
tgbtwntriv1 |
|
10 |
1 2 3 4 5 6 5 7 9
|
btwnlng1 |
|