Metamath Proof Explorer
		
		
		
		Description:  Reflexivity law for line membership.  Part of theorem 6.17 of
       Schwabhauser p. 45.  (Contributed by Thierry Arnoux, 17-May-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						tglineelsb2.p | 
						   | 
					
					
						 | 
						 | 
						tglineelsb2.i | 
						   | 
					
					
						 | 
						 | 
						tglineelsb2.l | 
						   | 
					
					
						 | 
						 | 
						tglineelsb2.g | 
						   | 
					
					
						 | 
						 | 
						tglineelsb2.1 | 
						   | 
					
					
						 | 
						 | 
						tglineelsb2.2 | 
						   | 
					
					
						 | 
						 | 
						tglineelsb2.4 | 
						   | 
					
				
					 | 
					Assertion | 
					tglinerflx1 | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tglineelsb2.p | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							tglineelsb2.i | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							tglineelsb2.l | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							tglineelsb2.g | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							tglineelsb2.1 | 
							   | 
						
						
							| 6 | 
							
								
							 | 
							tglineelsb2.2 | 
							   | 
						
						
							| 7 | 
							
								
							 | 
							tglineelsb2.4 | 
							   | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							   | 
						
						
							| 9 | 
							
								1 8 2 4 5 6
							 | 
							tgbtwntriv1 | 
							   | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 5 7 9
							 | 
							btwnlng1 | 
							   |