Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Colinearity
tglnpt
Next ⟩
tglngne
Metamath Proof Explorer
Ascii
Unicode
Theorem
tglnpt
Description:
Lines are sets of points.
(Contributed by
Thierry Arnoux
, 17-Oct-2019)
Ref
Expression
Hypotheses
tglng.p
⊢
P
=
Base
G
tglng.l
⊢
L
=
Line
𝒢
⁡
G
tglng.i
⊢
I
=
Itv
⁡
G
tglnpt.g
⊢
φ
→
G
∈
𝒢
Tarski
tglnpt.a
⊢
φ
→
A
∈
ran
⁡
L
tglnpt.x
⊢
φ
→
X
∈
A
Assertion
tglnpt
⊢
φ
→
X
∈
P
Proof
Step
Hyp
Ref
Expression
1
tglng.p
⊢
P
=
Base
G
2
tglng.l
⊢
L
=
Line
𝒢
⁡
G
3
tglng.i
⊢
I
=
Itv
⁡
G
4
tglnpt.g
⊢
φ
→
G
∈
𝒢
Tarski
5
tglnpt.a
⊢
φ
→
A
∈
ran
⁡
L
6
tglnpt.x
⊢
φ
→
X
∈
A
7
1
2
3
tglnunirn
⊢
G
∈
𝒢
Tarski
→
⋃
ran
⁡
L
⊆
P
8
4
7
syl
⊢
φ
→
⋃
ran
⁡
L
⊆
P
9
elssuni
⊢
A
∈
ran
⁡
L
→
A
⊆
⋃
ran
⁡
L
10
5
9
syl
⊢
φ
→
A
⊆
⋃
ran
⁡
L
11
10
6
sseldd
⊢
φ
→
X
∈
⋃
ran
⁡
L
12
8
11
sseldd
⊢
φ
→
X
∈
P