Metamath Proof Explorer


Theorem tglnpt

Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019)

Ref Expression
Hypotheses tglng.p P = Base G
tglng.l L = Line 𝒢 G
tglng.i I = Itv G
tglnpt.g φ G 𝒢 Tarski
tglnpt.a φ A ran L
tglnpt.x φ X A
Assertion tglnpt φ X P

Proof

Step Hyp Ref Expression
1 tglng.p P = Base G
2 tglng.l L = Line 𝒢 G
3 tglng.i I = Itv G
4 tglnpt.g φ G 𝒢 Tarski
5 tglnpt.a φ A ran L
6 tglnpt.x φ X A
7 1 2 3 tglnunirn G 𝒢 Tarski ran L P
8 4 7 syl φ ran L P
9 elssuni A ran L A ran L
10 5 9 syl φ A ran L
11 10 6 sseldd φ X ran L
12 8 11 sseldd φ X P