Metamath Proof Explorer


Theorem tglnpt2

Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019)

Ref Expression
Hypotheses tglnpt2.p P = Base G
tglnpt2.i I = Itv G
tglnpt2.l L = Line 𝒢 G
tglnpt2.g φ G 𝒢 Tarski
tglnpt2.a φ A ran L
tglnpt2.x φ X A
Assertion tglnpt2 φ y A X y

Proof

Step Hyp Ref Expression
1 tglnpt2.p P = Base G
2 tglnpt2.i I = Itv G
3 tglnpt2.l L = Line 𝒢 G
4 tglnpt2.g φ G 𝒢 Tarski
5 tglnpt2.a φ A ran L
6 tglnpt2.x φ X A
7 4 ad4antr φ x P z P A = x L z x z X = x G 𝒢 Tarski
8 simp-4r φ x P z P A = x L z x z X = x x P
9 simpllr φ x P z P A = x L z x z X = x z P
10 simplrr φ x P z P A = x L z x z X = x x z
11 1 2 3 7 8 9 10 tglinerflx2 φ x P z P A = x L z x z X = x z x L z
12 simplrl φ x P z P A = x L z x z X = x A = x L z
13 11 12 eleqtrrd φ x P z P A = x L z x z X = x z A
14 simpr φ x P z P A = x L z x z X = x X = x
15 14 10 eqnetrd φ x P z P A = x L z x z X = x X z
16 neeq2 y = z X y X z
17 16 rspcev z A X z y A X y
18 13 15 17 syl2anc φ x P z P A = x L z x z X = x y A X y
19 4 ad4antr φ x P z P A = x L z x z X x G 𝒢 Tarski
20 simp-4r φ x P z P A = x L z x z X x x P
21 simpllr φ x P z P A = x L z x z X x z P
22 simplrr φ x P z P A = x L z x z X x x z
23 1 2 3 19 20 21 22 tglinerflx1 φ x P z P A = x L z x z X x x x L z
24 simplrl φ x P z P A = x L z x z X x A = x L z
25 23 24 eleqtrrd φ x P z P A = x L z x z X x x A
26 simpr φ x P z P A = x L z x z X x X x
27 neeq2 y = x X y X x
28 27 rspcev x A X x y A X y
29 25 26 28 syl2anc φ x P z P A = x L z x z X x y A X y
30 18 29 pm2.61dane φ x P z P A = x L z x z y A X y
31 1 2 3 4 5 tgisline φ x P z P A = x L z x z
32 30 31 r19.29vva φ y A X y