Metamath Proof Explorer


Theorem tglnssp

Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglngval.p P = Base G
tglngval.l L = Line 𝒢 G
tglngval.i I = Itv G
tglngval.g φ G 𝒢 Tarski
tglngval.x φ X P
tglngval.y φ Y P
tglngval.z φ X Y
Assertion tglnssp φ X L Y P

Proof

Step Hyp Ref Expression
1 tglngval.p P = Base G
2 tglngval.l L = Line 𝒢 G
3 tglngval.i I = Itv G
4 tglngval.g φ G 𝒢 Tarski
5 tglngval.x φ X P
6 tglngval.y φ Y P
7 tglngval.z φ X Y
8 1 2 3 4 5 6 7 tglngval φ X L Y = z P | z X I Y X z I Y Y X I z
9 ssrab2 z P | z X I Y X z I Y Y X I z P
10 8 9 eqsstrdi φ X L Y P