Metamath Proof Explorer


Theorem tglowdim1

Description: Lower dimension axiom for one dimension. In dimension at least 1, there are at least two distinct points. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) to avoid a new definition, but a different convention could be chosen. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tglowdim1.p P = Base G
tglowdim1.d - ˙ = dist G
tglowdim1.i I = Itv G
tglowdim1.g φ G 𝒢 Tarski
tglowdim1.1 φ 2 P
Assertion tglowdim1 φ x P y P x y

Proof

Step Hyp Ref Expression
1 tglowdim1.p P = Base G
2 tglowdim1.d - ˙ = dist G
3 tglowdim1.i I = Itv G
4 tglowdim1.g φ G 𝒢 Tarski
5 tglowdim1.1 φ 2 P
6 1 fvexi P V
7 hashge2el2dif P V 2 P x P y P x y
8 6 5 7 sylancr φ x P y P x y