Metamath Proof Explorer


Theorem tglowdim2l

Description: Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses tglineintmo.p P = Base G
tglineintmo.i I = Itv G
tglineintmo.l L = Line 𝒢 G
tglineintmo.g φ G 𝒢 Tarski
tglowdim2l.1 φ G Dim 𝒢 2
Assertion tglowdim2l φ a P b P c P ¬ c a L b a = b

Proof

Step Hyp Ref Expression
1 tglineintmo.p P = Base G
2 tglineintmo.i I = Itv G
3 tglineintmo.l L = Line 𝒢 G
4 tglineintmo.g φ G 𝒢 Tarski
5 tglowdim2l.1 φ G Dim 𝒢 2
6 eqid dist G = dist G
7 1 6 2 4 5 axtglowdim2 φ a P b P c P ¬ c a I b a c I b b a I c
8 4 ad3antrrr φ a P b P c P G 𝒢 Tarski
9 simpllr φ a P b P c P a P
10 simplr φ a P b P c P b P
11 simpr φ a P b P c P c P
12 1 3 2 8 9 10 11 tgcolg φ a P b P c P c a L b a = b c a I b a c I b b a I c
13 12 notbid φ a P b P c P ¬ c a L b a = b ¬ c a I b a c I b b a I c
14 13 rexbidva φ a P b P c P ¬ c a L b a = b c P ¬ c a I b a c I b b a I c
15 14 rexbidva φ a P b P c P ¬ c a L b a = b b P c P ¬ c a I b a c I b b a I c
16 15 rexbidva φ a P b P c P ¬ c a L b a = b a P b P c P ¬ c a I b a c I b b a I c
17 7 16 mpbird φ a P b P c P ¬ c a L b a = b