Metamath Proof Explorer


Theorem tgoldbachgnn

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtda.o O = z | ¬ 2 z
tgoldbachgtda.n φ N O
tgoldbachgtda.0 φ 10 27 N
Assertion tgoldbachgnn φ N

Proof

Step Hyp Ref Expression
1 tgoldbachgtda.o O = z | ¬ 2 z
2 tgoldbachgtda.n φ N O
3 tgoldbachgtda.0 φ 10 27 N
4 2 1 eleqtrdi φ N z | ¬ 2 z
5 elrabi N z | ¬ 2 z N
6 4 5 syl φ N
7 1red φ 1
8 10nn0 10 0
9 8 nn0rei 10
10 2nn0 2 0
11 7nn0 7 0
12 10 11 deccl 27 0
13 reexpcl 10 27 0 10 27
14 9 12 13 mp2an 10 27
15 14 a1i φ 10 27
16 6 zred φ N
17 1re 1
18 1lt10 1 < 10
19 17 9 18 ltleii 1 10
20 expge1 10 27 0 1 10 1 10 27
21 9 12 19 20 mp3an 1 10 27
22 21 a1i φ 1 10 27
23 7 15 16 22 3 letrd φ 1 N
24 elnnz1 N N 1 N
25 6 23 24 sylanbrc φ N