Metamath Proof Explorer


Theorem tgoldbachgt

Description: Odd integers greater than ( ; 1 0 ^ ; 2 7 ) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of Helfgott p. 70 , expressed using the set G of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021)

Ref Expression
Hypotheses tgoldbachgt.o O = z | ¬ 2 z
tgoldbachgt.g G = z O | p q r p O q O r O z = p + q + r
Assertion tgoldbachgt m m 10 27 n O m < n n G

Proof

Step Hyp Ref Expression
1 tgoldbachgt.o O = z | ¬ 2 z
2 tgoldbachgt.g G = z O | p q r p O q O r O z = p + q + r
3 10nn 10
4 2nn0 2 0
5 7nn0 7 0
6 4 5 deccl 27 0
7 nnexpcl 10 27 0 10 27
8 3 6 7 mp2an 10 27
9 8 nnrei 10 27
10 9 leidi 10 27 10 27
11 simpl n O 10 27 < n n O
12 inss2 O
13 prmssnn
14 12 13 sstri O
15 14 a1i n O 10 27 < n c O repr 3 n O
16 1 eleq2i n O n z | ¬ 2 z
17 elrabi n z | ¬ 2 z n
18 16 17 sylbi n O n
19 18 ad2antrr n O 10 27 < n c O repr 3 n n
20 3nn0 3 0
21 20 a1i n O 10 27 < n c O repr 3 n 3 0
22 simpr n O 10 27 < n c O repr 3 n c O repr 3 n
23 15 19 21 22 reprf n O 10 27 < n c O repr 3 n c : 0 ..^ 3 O
24 c0ex 0 V
25 24 tpid1 0 0 1 2
26 fzo0to3tp 0 ..^ 3 = 0 1 2
27 25 26 eleqtrri 0 0 ..^ 3
28 27 a1i n O 10 27 < n c O repr 3 n 0 0 ..^ 3
29 23 28 ffvelrnd n O 10 27 < n c O repr 3 n c 0 O
30 29 elin2d n O 10 27 < n c O repr 3 n c 0
31 1ex 1 V
32 31 tpid2 1 0 1 2
33 32 26 eleqtrri 1 0 ..^ 3
34 33 a1i n O 10 27 < n c O repr 3 n 1 0 ..^ 3
35 23 34 ffvelrnd n O 10 27 < n c O repr 3 n c 1 O
36 35 elin2d n O 10 27 < n c O repr 3 n c 1
37 2ex 2 V
38 37 tpid3 2 0 1 2
39 38 26 eleqtrri 2 0 ..^ 3
40 39 a1i n O 10 27 < n c O repr 3 n 2 0 ..^ 3
41 23 40 ffvelrnd n O 10 27 < n c O repr 3 n c 2 O
42 41 elin2d n O 10 27 < n c O repr 3 n c 2
43 29 elin1d n O 10 27 < n c O repr 3 n c 0 O
44 35 elin1d n O 10 27 < n c O repr 3 n c 1 O
45 41 elin1d n O 10 27 < n c O repr 3 n c 2 O
46 43 44 45 3jca n O 10 27 < n c O repr 3 n c 0 O c 1 O c 2 O
47 26 a1i n O 10 27 < n c O repr 3 n 0 ..^ 3 = 0 1 2
48 47 sumeq1d n O 10 27 < n c O repr 3 n i 0 ..^ 3 c i = i 0 1 2 c i
49 15 19 21 22 reprsum n O 10 27 < n c O repr 3 n i 0 ..^ 3 c i = n
50 fveq2 i = 0 c i = c 0
51 fveq2 i = 1 c i = c 1
52 fveq2 i = 2 c i = c 2
53 14 29 sselid n O 10 27 < n c O repr 3 n c 0
54 53 nncnd n O 10 27 < n c O repr 3 n c 0
55 14 35 sselid n O 10 27 < n c O repr 3 n c 1
56 55 nncnd n O 10 27 < n c O repr 3 n c 1
57 14 41 sselid n O 10 27 < n c O repr 3 n c 2
58 57 nncnd n O 10 27 < n c O repr 3 n c 2
59 54 56 58 3jca n O 10 27 < n c O repr 3 n c 0 c 1 c 2
60 24 a1i n O 10 27 < n c O repr 3 n 0 V
61 31 a1i n O 10 27 < n c O repr 3 n 1 V
62 37 a1i n O 10 27 < n c O repr 3 n 2 V
63 60 61 62 3jca n O 10 27 < n c O repr 3 n 0 V 1 V 2 V
64 0ne1 0 1
65 64 a1i n O 10 27 < n c O repr 3 n 0 1
66 0ne2 0 2
67 66 a1i n O 10 27 < n c O repr 3 n 0 2
68 1ne2 1 2
69 68 a1i n O 10 27 < n c O repr 3 n 1 2
70 50 51 52 59 63 65 67 69 sumtp n O 10 27 < n c O repr 3 n i 0 1 2 c i = c 0 + c 1 + c 2
71 48 49 70 3eqtr3d n O 10 27 < n c O repr 3 n n = c 0 + c 1 + c 2
72 46 71 jca n O 10 27 < n c O repr 3 n c 0 O c 1 O c 2 O n = c 0 + c 1 + c 2
73 eleq1 p = c 0 p O c 0 O
74 73 3anbi1d p = c 0 p O q O r O c 0 O q O r O
75 oveq1 p = c 0 p + q = c 0 + q
76 75 oveq1d p = c 0 p + q + r = c 0 + q + r
77 76 eqeq2d p = c 0 n = p + q + r n = c 0 + q + r
78 74 77 anbi12d p = c 0 p O q O r O n = p + q + r c 0 O q O r O n = c 0 + q + r
79 eleq1 q = c 1 q O c 1 O
80 79 3anbi2d q = c 1 c 0 O q O r O c 0 O c 1 O r O
81 oveq2 q = c 1 c 0 + q = c 0 + c 1
82 81 oveq1d q = c 1 c 0 + q + r = c 0 + c 1 + r
83 82 eqeq2d q = c 1 n = c 0 + q + r n = c 0 + c 1 + r
84 80 83 anbi12d q = c 1 c 0 O q O r O n = c 0 + q + r c 0 O c 1 O r O n = c 0 + c 1 + r
85 eleq1 r = c 2 r O c 2 O
86 85 3anbi3d r = c 2 c 0 O c 1 O r O c 0 O c 1 O c 2 O
87 oveq2 r = c 2 c 0 + c 1 + r = c 0 + c 1 + c 2
88 87 eqeq2d r = c 2 n = c 0 + c 1 + r n = c 0 + c 1 + c 2
89 86 88 anbi12d r = c 2 c 0 O c 1 O r O n = c 0 + c 1 + r c 0 O c 1 O c 2 O n = c 0 + c 1 + c 2
90 78 84 89 rspc3ev c 0 c 1 c 2 c 0 O c 1 O c 2 O n = c 0 + c 1 + c 2 p q r p O q O r O n = p + q + r
91 30 36 42 72 90 syl31anc n O 10 27 < n c O repr 3 n p q r p O q O r O n = p + q + r
92 91 adantr n O 10 27 < n c O repr 3 n p q r p O q O r O n = p + q + r
93 8 a1i n O 10 27 < n 10 27
94 93 nnred n O 10 27 < n 10 27
95 18 zred n O n
96 95 adantr n O 10 27 < n n
97 simpr n O 10 27 < n 10 27 < n
98 94 96 97 ltled n O 10 27 < n 10 27 n
99 1 11 98 tgoldbachgtd n O 10 27 < n 0 < O repr 3 n
100 ovex O repr 3 n V
101 hashneq0 O repr 3 n V 0 < O repr 3 n O repr 3 n
102 100 101 ax-mp 0 < O repr 3 n O repr 3 n
103 99 102 sylib n O 10 27 < n O repr 3 n
104 103 neneqd n O 10 27 < n ¬ O repr 3 n =
105 neq0 ¬ O repr 3 n = c c O repr 3 n
106 104 105 sylib n O 10 27 < n c c O repr 3 n
107 tru
108 106 107 jctil n O 10 27 < n c c O repr 3 n
109 19.42v c c O repr 3 n c c O repr 3 n
110 108 109 sylibr n O 10 27 < n c c O repr 3 n
111 exancom c c O repr 3 n c c O repr 3 n
112 110 111 sylib n O 10 27 < n c c O repr 3 n
113 df-rex c O repr 3 n c c O repr 3 n
114 112 113 sylibr n O 10 27 < n c O repr 3 n
115 92 114 r19.29a n O 10 27 < n p q r p O q O r O n = p + q + r
116 2 eleq2i n G n z O | p q r p O q O r O z = p + q + r
117 eqeq1 z = n z = p + q + r n = p + q + r
118 117 anbi2d z = n p O q O r O z = p + q + r p O q O r O n = p + q + r
119 118 rexbidv z = n r p O q O r O z = p + q + r r p O q O r O n = p + q + r
120 119 rexbidv z = n q r p O q O r O z = p + q + r q r p O q O r O n = p + q + r
121 120 rexbidv z = n p q r p O q O r O z = p + q + r p q r p O q O r O n = p + q + r
122 121 elrab3 n O n z O | p q r p O q O r O z = p + q + r p q r p O q O r O n = p + q + r
123 116 122 syl5bb n O n G p q r p O q O r O n = p + q + r
124 123 biimpar n O p q r p O q O r O n = p + q + r n G
125 11 115 124 syl2anc n O 10 27 < n n G
126 125 ex n O 10 27 < n n G
127 126 rgen n O 10 27 < n n G
128 10 127 pm3.2i 10 27 10 27 n O 10 27 < n n G
129 breq1 m = 10 27 m 10 27 10 27 10 27
130 breq1 m = 10 27 m < n 10 27 < n
131 130 imbi1d m = 10 27 m < n n G 10 27 < n n G
132 131 ralbidv m = 10 27 n O m < n n G n O 10 27 < n n G
133 129 132 anbi12d m = 10 27 m 10 27 n O m < n n G 10 27 10 27 n O 10 27 < n n G
134 133 rspcev 10 27 10 27 10 27 n O 10 27 < n n G m m 10 27 n O m < n n G
135 8 128 134 mp2an m m 10 27 n O m < n n G