Step |
Hyp |
Ref |
Expression |
1 |
|
tgoldbachgt.o |
|
2 |
|
tgoldbachgt.g |
|
3 |
|
10nn |
|
4 |
|
2nn0 |
|
5 |
|
7nn0 |
|
6 |
4 5
|
deccl |
|
7 |
|
nnexpcl |
|
8 |
3 6 7
|
mp2an |
|
9 |
8
|
nnrei |
|
10 |
9
|
leidi |
|
11 |
|
simpl |
|
12 |
|
inss2 |
|
13 |
|
prmssnn |
|
14 |
12 13
|
sstri |
|
15 |
14
|
a1i |
|
16 |
1
|
eleq2i |
|
17 |
|
elrabi |
|
18 |
16 17
|
sylbi |
|
19 |
18
|
ad2antrr |
|
20 |
|
3nn0 |
|
21 |
20
|
a1i |
|
22 |
|
simpr |
|
23 |
15 19 21 22
|
reprf |
|
24 |
|
c0ex |
|
25 |
24
|
tpid1 |
|
26 |
|
fzo0to3tp |
|
27 |
25 26
|
eleqtrri |
|
28 |
27
|
a1i |
|
29 |
23 28
|
ffvelrnd |
|
30 |
29
|
elin2d |
|
31 |
|
1ex |
|
32 |
31
|
tpid2 |
|
33 |
32 26
|
eleqtrri |
|
34 |
33
|
a1i |
|
35 |
23 34
|
ffvelrnd |
|
36 |
35
|
elin2d |
|
37 |
|
2ex |
|
38 |
37
|
tpid3 |
|
39 |
38 26
|
eleqtrri |
|
40 |
39
|
a1i |
|
41 |
23 40
|
ffvelrnd |
|
42 |
41
|
elin2d |
|
43 |
29
|
elin1d |
|
44 |
35
|
elin1d |
|
45 |
41
|
elin1d |
|
46 |
43 44 45
|
3jca |
|
47 |
26
|
a1i |
|
48 |
47
|
sumeq1d |
|
49 |
15 19 21 22
|
reprsum |
|
50 |
|
fveq2 |
|
51 |
|
fveq2 |
|
52 |
|
fveq2 |
|
53 |
14 29
|
sselid |
|
54 |
53
|
nncnd |
|
55 |
14 35
|
sselid |
|
56 |
55
|
nncnd |
|
57 |
14 41
|
sselid |
|
58 |
57
|
nncnd |
|
59 |
54 56 58
|
3jca |
|
60 |
24
|
a1i |
|
61 |
31
|
a1i |
|
62 |
37
|
a1i |
|
63 |
60 61 62
|
3jca |
|
64 |
|
0ne1 |
|
65 |
64
|
a1i |
|
66 |
|
0ne2 |
|
67 |
66
|
a1i |
|
68 |
|
1ne2 |
|
69 |
68
|
a1i |
|
70 |
50 51 52 59 63 65 67 69
|
sumtp |
|
71 |
48 49 70
|
3eqtr3d |
|
72 |
46 71
|
jca |
|
73 |
|
eleq1 |
|
74 |
73
|
3anbi1d |
|
75 |
|
oveq1 |
|
76 |
75
|
oveq1d |
|
77 |
76
|
eqeq2d |
|
78 |
74 77
|
anbi12d |
|
79 |
|
eleq1 |
|
80 |
79
|
3anbi2d |
|
81 |
|
oveq2 |
|
82 |
81
|
oveq1d |
|
83 |
82
|
eqeq2d |
|
84 |
80 83
|
anbi12d |
|
85 |
|
eleq1 |
|
86 |
85
|
3anbi3d |
|
87 |
|
oveq2 |
|
88 |
87
|
eqeq2d |
|
89 |
86 88
|
anbi12d |
|
90 |
78 84 89
|
rspc3ev |
|
91 |
30 36 42 72 90
|
syl31anc |
|
92 |
91
|
adantr |
|
93 |
8
|
a1i |
|
94 |
93
|
nnred |
|
95 |
18
|
zred |
|
96 |
95
|
adantr |
|
97 |
|
simpr |
|
98 |
94 96 97
|
ltled |
|
99 |
1 11 98
|
tgoldbachgtd |
|
100 |
|
ovex |
|
101 |
|
hashneq0 |
|
102 |
100 101
|
ax-mp |
|
103 |
99 102
|
sylib |
|
104 |
103
|
neneqd |
|
105 |
|
neq0 |
|
106 |
104 105
|
sylib |
|
107 |
|
tru |
|
108 |
106 107
|
jctil |
|
109 |
|
19.42v |
|
110 |
108 109
|
sylibr |
|
111 |
|
exancom |
|
112 |
110 111
|
sylib |
|
113 |
|
df-rex |
|
114 |
112 113
|
sylibr |
|
115 |
92 114
|
r19.29a |
|
116 |
2
|
eleq2i |
|
117 |
|
eqeq1 |
|
118 |
117
|
anbi2d |
|
119 |
118
|
rexbidv |
|
120 |
119
|
rexbidv |
|
121 |
120
|
rexbidv |
|
122 |
121
|
elrab3 |
|
123 |
116 122
|
syl5bb |
|
124 |
123
|
biimpar |
|
125 |
11 115 124
|
syl2anc |
|
126 |
125
|
ex |
|
127 |
126
|
rgen |
|
128 |
10 127
|
pm3.2i |
|
129 |
|
breq1 |
|
130 |
|
breq1 |
|
131 |
130
|
imbi1d |
|
132 |
131
|
ralbidv |
|
133 |
129 132
|
anbi12d |
|
134 |
133
|
rspcev |
|
135 |
8 128 134
|
mp2an |
|