| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgoldbachgtda.o |
|
| 2 |
|
tgoldbachgtda.n |
|
| 3 |
|
tgoldbachgtda.0 |
|
| 4 |
|
tgoldbachgtda.h |
|
| 5 |
|
tgoldbachgtda.k |
|
| 6 |
|
tgoldbachgtda.1 |
|
| 7 |
|
tgoldbachgtda.2 |
|
| 8 |
|
tgoldbachgtda.3 |
|
| 9 |
1 2 3
|
tgoldbachgnn |
|
| 10 |
9
|
nnnn0d |
|
| 11 |
|
3nn0 |
|
| 12 |
11
|
a1i |
|
| 13 |
|
ssidd |
|
| 14 |
10 12 13
|
reprfi2 |
|
| 15 |
|
diffi |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
difssd |
|
| 18 |
17
|
sselda |
|
| 19 |
|
vmaf |
|
| 20 |
19
|
a1i |
|
| 21 |
|
ssidd |
|
| 22 |
10
|
nn0zd |
|
| 23 |
22
|
adantr |
|
| 24 |
11
|
a1i |
|
| 25 |
|
simpr |
|
| 26 |
21 23 24 25
|
reprf |
|
| 27 |
|
c0ex |
|
| 28 |
27
|
tpid1 |
|
| 29 |
|
fzo0to3tp |
|
| 30 |
28 29
|
eleqtrri |
|
| 31 |
30
|
a1i |
|
| 32 |
26 31
|
ffvelcdmd |
|
| 33 |
20 32
|
ffvelcdmd |
|
| 34 |
|
rge0ssre |
|
| 35 |
|
fss |
|
| 36 |
4 34 35
|
sylancl |
|
| 37 |
36
|
adantr |
|
| 38 |
37 32
|
ffvelcdmd |
|
| 39 |
33 38
|
remulcld |
|
| 40 |
|
1ex |
|
| 41 |
40
|
tpid2 |
|
| 42 |
41 29
|
eleqtrri |
|
| 43 |
42
|
a1i |
|
| 44 |
26 43
|
ffvelcdmd |
|
| 45 |
20 44
|
ffvelcdmd |
|
| 46 |
|
fss |
|
| 47 |
5 34 46
|
sylancl |
|
| 48 |
47
|
adantr |
|
| 49 |
48 44
|
ffvelcdmd |
|
| 50 |
45 49
|
remulcld |
|
| 51 |
|
2ex |
|
| 52 |
51
|
tpid3 |
|
| 53 |
52 29
|
eleqtrri |
|
| 54 |
53
|
a1i |
|
| 55 |
26 54
|
ffvelcdmd |
|
| 56 |
20 55
|
ffvelcdmd |
|
| 57 |
48 55
|
ffvelcdmd |
|
| 58 |
56 57
|
remulcld |
|
| 59 |
50 58
|
remulcld |
|
| 60 |
39 59
|
remulcld |
|
| 61 |
18 60
|
syldan |
|
| 62 |
16 61
|
fsumrecl |
|
| 63 |
|
0nn0 |
|
| 64 |
|
qssre |
|
| 65 |
|
4nn0 |
|
| 66 |
|
2nn0 |
|
| 67 |
|
nn0ssq |
|
| 68 |
|
8nn0 |
|
| 69 |
67 68
|
sselii |
|
| 70 |
65 69
|
dp2clq |
|
| 71 |
66 70
|
dp2clq |
|
| 72 |
66 71
|
dp2clq |
|
| 73 |
65 72
|
dp2clq |
|
| 74 |
63 73
|
dp2clq |
|
| 75 |
63 74
|
dp2clq |
|
| 76 |
63 75
|
dp2clq |
|
| 77 |
64 76
|
sselii |
|
| 78 |
|
dpcl |
|
| 79 |
63 77 78
|
mp2an |
|
| 80 |
79
|
a1i |
|
| 81 |
9
|
nnred |
|
| 82 |
81
|
resqcld |
|
| 83 |
80 82
|
remulcld |
|
| 84 |
14 60
|
fsumrecl |
|
| 85 |
|
7nn0 |
|
| 86 |
11 70
|
dp2clq |
|
| 87 |
64 86
|
sselii |
|
| 88 |
|
dpcl |
|
| 89 |
85 87 88
|
mp2an |
|
| 90 |
89
|
a1i |
|
| 91 |
9
|
nnrpd |
|
| 92 |
91
|
relogcld |
|
| 93 |
10
|
nn0ge0d |
|
| 94 |
81 93
|
resqrtcld |
|
| 95 |
91
|
sqrtgt0d |
|
| 96 |
95
|
gt0ne0d |
|
| 97 |
92 94 96
|
redivcld |
|
| 98 |
90 97
|
remulcld |
|
| 99 |
98 82
|
remulcld |
|
| 100 |
1 9 3 4 5 6 7
|
hgt750leme |
|
| 101 |
|
2z |
|
| 102 |
101
|
a1i |
|
| 103 |
91 102
|
rpexpcld |
|
| 104 |
|
hgt750lem |
|
| 105 |
10 3 104
|
syl2anc |
|
| 106 |
98 80 103 105
|
ltmul1dd |
|
| 107 |
62 99 83 100 106
|
lelttrd |
|
| 108 |
36 47 10
|
circlemethhgt |
|
| 109 |
8 108
|
breqtrrd |
|
| 110 |
62 83 84 107 109
|
ltletrd |
|
| 111 |
62 84
|
posdifd |
|
| 112 |
110 111
|
mpbid |
|
| 113 |
|
inss2 |
|
| 114 |
|
prmssnn |
|
| 115 |
113 114
|
sstri |
|
| 116 |
115
|
a1i |
|
| 117 |
13 22 12 116
|
reprss |
|
| 118 |
14 117
|
ssfid |
|
| 119 |
117
|
sselda |
|
| 120 |
60
|
recnd |
|
| 121 |
119 120
|
syldan |
|
| 122 |
118 121
|
fsumcl |
|
| 123 |
62
|
recnd |
|
| 124 |
|
disjdif |
|
| 125 |
124
|
a1i |
|
| 126 |
|
undif |
|
| 127 |
117 126
|
sylib |
|
| 128 |
127
|
eqcomd |
|
| 129 |
125 128 14 120
|
fsumsplit |
|
| 130 |
122 123 129
|
mvrraddd |
|
| 131 |
112 130
|
breqtrd |
|