Metamath Proof Explorer


Theorem tgoldbachgtde

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtda.o O = z | ¬ 2 z
tgoldbachgtda.n φ N O
tgoldbachgtda.0 φ 10 27 N
tgoldbachgtda.h φ H : 0 +∞
tgoldbachgtda.k φ K : 0 +∞
tgoldbachgtda.1 φ m K m 1.079955
tgoldbachgtda.2 φ m H m 1.414
tgoldbachgtda.3 φ 0.00042248 N 2 0 1 Λ × f H vts N x Λ × f K vts N x 2 e i 2 π -N x dx
Assertion tgoldbachgtde φ 0 < n O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2

Proof

Step Hyp Ref Expression
1 tgoldbachgtda.o O = z | ¬ 2 z
2 tgoldbachgtda.n φ N O
3 tgoldbachgtda.0 φ 10 27 N
4 tgoldbachgtda.h φ H : 0 +∞
5 tgoldbachgtda.k φ K : 0 +∞
6 tgoldbachgtda.1 φ m K m 1.079955
7 tgoldbachgtda.2 φ m H m 1.414
8 tgoldbachgtda.3 φ 0.00042248 N 2 0 1 Λ × f H vts N x Λ × f K vts N x 2 e i 2 π -N x dx
9 1 2 3 tgoldbachgnn φ N
10 9 nnnn0d φ N 0
11 3nn0 3 0
12 11 a1i φ 3 0
13 ssidd φ
14 10 12 13 reprfi2 φ repr 3 N Fin
15 diffi repr 3 N Fin repr 3 N O repr 3 N Fin
16 14 15 syl φ repr 3 N O repr 3 N Fin
17 difssd φ repr 3 N O repr 3 N repr 3 N
18 17 sselda φ n repr 3 N O repr 3 N n repr 3 N
19 vmaf Λ :
20 19 a1i φ n repr 3 N Λ :
21 ssidd φ n repr 3 N
22 10 nn0zd φ N
23 22 adantr φ n repr 3 N N
24 11 a1i φ n repr 3 N 3 0
25 simpr φ n repr 3 N n repr 3 N
26 21 23 24 25 reprf φ n repr 3 N n : 0 ..^ 3
27 c0ex 0 V
28 27 tpid1 0 0 1 2
29 fzo0to3tp 0 ..^ 3 = 0 1 2
30 28 29 eleqtrri 0 0 ..^ 3
31 30 a1i φ n repr 3 N 0 0 ..^ 3
32 26 31 ffvelrnd φ n repr 3 N n 0
33 20 32 ffvelrnd φ n repr 3 N Λ n 0
34 rge0ssre 0 +∞
35 fss H : 0 +∞ 0 +∞ H :
36 4 34 35 sylancl φ H :
37 36 adantr φ n repr 3 N H :
38 37 32 ffvelrnd φ n repr 3 N H n 0
39 33 38 remulcld φ n repr 3 N Λ n 0 H n 0
40 1ex 1 V
41 40 tpid2 1 0 1 2
42 41 29 eleqtrri 1 0 ..^ 3
43 42 a1i φ n repr 3 N 1 0 ..^ 3
44 26 43 ffvelrnd φ n repr 3 N n 1
45 20 44 ffvelrnd φ n repr 3 N Λ n 1
46 fss K : 0 +∞ 0 +∞ K :
47 5 34 46 sylancl φ K :
48 47 adantr φ n repr 3 N K :
49 48 44 ffvelrnd φ n repr 3 N K n 1
50 45 49 remulcld φ n repr 3 N Λ n 1 K n 1
51 2ex 2 V
52 51 tpid3 2 0 1 2
53 52 29 eleqtrri 2 0 ..^ 3
54 53 a1i φ n repr 3 N 2 0 ..^ 3
55 26 54 ffvelrnd φ n repr 3 N n 2
56 20 55 ffvelrnd φ n repr 3 N Λ n 2
57 48 55 ffvelrnd φ n repr 3 N K n 2
58 56 57 remulcld φ n repr 3 N Λ n 2 K n 2
59 50 58 remulcld φ n repr 3 N Λ n 1 K n 1 Λ n 2 K n 2
60 39 59 remulcld φ n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
61 18 60 syldan φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
62 16 61 fsumrecl φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
63 0nn0 0 0
64 qssre
65 4nn0 4 0
66 2nn0 2 0
67 nn0ssq 0
68 8nn0 8 0
69 67 68 sselii 8
70 65 69 dp2clq 48
71 66 70 dp2clq 248
72 66 71 dp2clq 2248
73 65 72 dp2clq 42248
74 63 73 dp2clq 042248
75 63 74 dp2clq 0042248
76 63 75 dp2clq 00042248
77 64 76 sselii 00042248
78 dpcl 0 0 00042248 0.00042248
79 63 77 78 mp2an 0.00042248
80 79 a1i φ 0.00042248
81 9 nnred φ N
82 81 resqcld φ N 2
83 80 82 remulcld φ 0.00042248 N 2
84 14 60 fsumrecl φ n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
85 7nn0 7 0
86 11 70 dp2clq 348
87 64 86 sselii 348
88 dpcl 7 0 348 7.348
89 85 87 88 mp2an 7.348
90 89 a1i φ 7.348
91 9 nnrpd φ N +
92 91 relogcld φ log N
93 10 nn0ge0d φ 0 N
94 81 93 resqrtcld φ N
95 91 sqrtgt0d φ 0 < N
96 95 gt0ne0d φ N 0
97 92 94 96 redivcld φ log N N
98 90 97 remulcld φ 7.348 log N N
99 98 82 remulcld φ 7.348 log N N N 2
100 1 9 3 4 5 6 7 hgt750leme φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 7.348 log N N N 2
101 2z 2
102 101 a1i φ 2
103 91 102 rpexpcld φ N 2 +
104 hgt750lem N 0 10 27 N 7.348 log N N < 0.00042248
105 10 3 104 syl2anc φ 7.348 log N N < 0.00042248
106 98 80 103 105 ltmul1dd φ 7.348 log N N N 2 < 0.00042248 N 2
107 62 99 83 100 106 lelttrd φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 < 0.00042248 N 2
108 36 47 10 circlemethhgt φ n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 = 0 1 Λ × f H vts N x Λ × f K vts N x 2 e i 2 π -N x dx
109 8 108 breqtrrd φ 0.00042248 N 2 n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
110 62 83 84 107 109 ltletrd φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 < n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
111 62 84 posdifd φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 < n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 0 < n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
112 110 111 mpbid φ 0 < n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
113 inss2 O
114 prmssnn
115 113 114 sstri O
116 115 a1i φ O
117 13 22 12 116 reprss φ O repr 3 N repr 3 N
118 14 117 ssfid φ O repr 3 N Fin
119 117 sselda φ n O repr 3 N n repr 3 N
120 60 recnd φ n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
121 119 120 syldan φ n O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
122 118 121 fsumcl φ n O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
123 62 recnd φ n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
124 disjdif O repr 3 N repr 3 N O repr 3 N =
125 124 a1i φ O repr 3 N repr 3 N O repr 3 N =
126 undif O repr 3 N repr 3 N O repr 3 N repr 3 N O repr 3 N = repr 3 N
127 117 126 sylib φ O repr 3 N repr 3 N O repr 3 N = repr 3 N
128 127 eqcomd φ repr 3 N = O repr 3 N repr 3 N O repr 3 N
129 125 128 14 120 fsumsplit φ n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 = n O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 + n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
130 122 123 129 mvrraddd φ n repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 n repr 3 N O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2 = n O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2
131 112 130 breqtrd φ 0 < n O repr 3 N Λ n 0 H n 0 Λ n 1 K n 1 Λ n 2 K n 2