Step |
Hyp |
Ref |
Expression |
1 |
|
tgoldbachgtda.o |
|
2 |
|
tgoldbachgtda.n |
|
3 |
|
tgoldbachgtda.0 |
|
4 |
|
tgoldbachgtda.h |
|
5 |
|
tgoldbachgtda.k |
|
6 |
|
tgoldbachgtda.1 |
|
7 |
|
tgoldbachgtda.2 |
|
8 |
|
tgoldbachgtda.3 |
|
9 |
1 2 3
|
tgoldbachgnn |
|
10 |
9
|
nnnn0d |
|
11 |
|
3nn0 |
|
12 |
11
|
a1i |
|
13 |
|
ssidd |
|
14 |
10 12 13
|
reprfi2 |
|
15 |
|
diffi |
|
16 |
14 15
|
syl |
|
17 |
|
difssd |
|
18 |
17
|
sselda |
|
19 |
|
vmaf |
|
20 |
19
|
a1i |
|
21 |
|
ssidd |
|
22 |
10
|
nn0zd |
|
23 |
22
|
adantr |
|
24 |
11
|
a1i |
|
25 |
|
simpr |
|
26 |
21 23 24 25
|
reprf |
|
27 |
|
c0ex |
|
28 |
27
|
tpid1 |
|
29 |
|
fzo0to3tp |
|
30 |
28 29
|
eleqtrri |
|
31 |
30
|
a1i |
|
32 |
26 31
|
ffvelrnd |
|
33 |
20 32
|
ffvelrnd |
|
34 |
|
rge0ssre |
|
35 |
|
fss |
|
36 |
4 34 35
|
sylancl |
|
37 |
36
|
adantr |
|
38 |
37 32
|
ffvelrnd |
|
39 |
33 38
|
remulcld |
|
40 |
|
1ex |
|
41 |
40
|
tpid2 |
|
42 |
41 29
|
eleqtrri |
|
43 |
42
|
a1i |
|
44 |
26 43
|
ffvelrnd |
|
45 |
20 44
|
ffvelrnd |
|
46 |
|
fss |
|
47 |
5 34 46
|
sylancl |
|
48 |
47
|
adantr |
|
49 |
48 44
|
ffvelrnd |
|
50 |
45 49
|
remulcld |
|
51 |
|
2ex |
|
52 |
51
|
tpid3 |
|
53 |
52 29
|
eleqtrri |
|
54 |
53
|
a1i |
|
55 |
26 54
|
ffvelrnd |
|
56 |
20 55
|
ffvelrnd |
|
57 |
48 55
|
ffvelrnd |
|
58 |
56 57
|
remulcld |
|
59 |
50 58
|
remulcld |
|
60 |
39 59
|
remulcld |
|
61 |
18 60
|
syldan |
|
62 |
16 61
|
fsumrecl |
|
63 |
|
0nn0 |
|
64 |
|
qssre |
|
65 |
|
4nn0 |
|
66 |
|
2nn0 |
|
67 |
|
nn0ssq |
|
68 |
|
8nn0 |
|
69 |
67 68
|
sselii |
|
70 |
65 69
|
dp2clq |
|
71 |
66 70
|
dp2clq |
|
72 |
66 71
|
dp2clq |
|
73 |
65 72
|
dp2clq |
|
74 |
63 73
|
dp2clq |
|
75 |
63 74
|
dp2clq |
|
76 |
63 75
|
dp2clq |
|
77 |
64 76
|
sselii |
|
78 |
|
dpcl |
|
79 |
63 77 78
|
mp2an |
|
80 |
79
|
a1i |
|
81 |
9
|
nnred |
|
82 |
81
|
resqcld |
|
83 |
80 82
|
remulcld |
|
84 |
14 60
|
fsumrecl |
|
85 |
|
7nn0 |
|
86 |
11 70
|
dp2clq |
|
87 |
64 86
|
sselii |
|
88 |
|
dpcl |
|
89 |
85 87 88
|
mp2an |
|
90 |
89
|
a1i |
|
91 |
9
|
nnrpd |
|
92 |
91
|
relogcld |
|
93 |
10
|
nn0ge0d |
|
94 |
81 93
|
resqrtcld |
|
95 |
91
|
sqrtgt0d |
|
96 |
95
|
gt0ne0d |
|
97 |
92 94 96
|
redivcld |
|
98 |
90 97
|
remulcld |
|
99 |
98 82
|
remulcld |
|
100 |
1 9 3 4 5 6 7
|
hgt750leme |
|
101 |
|
2z |
|
102 |
101
|
a1i |
|
103 |
91 102
|
rpexpcld |
|
104 |
|
hgt750lem |
|
105 |
10 3 104
|
syl2anc |
|
106 |
98 80 103 105
|
ltmul1dd |
|
107 |
62 99 83 100 106
|
lelttrd |
|
108 |
36 47 10
|
circlemethhgt |
|
109 |
8 108
|
breqtrrd |
|
110 |
62 83 84 107 109
|
ltletrd |
|
111 |
62 84
|
posdifd |
|
112 |
110 111
|
mpbid |
|
113 |
|
inss2 |
|
114 |
|
prmssnn |
|
115 |
113 114
|
sstri |
|
116 |
115
|
a1i |
|
117 |
13 22 12 116
|
reprss |
|
118 |
14 117
|
ssfid |
|
119 |
117
|
sselda |
|
120 |
60
|
recnd |
|
121 |
119 120
|
syldan |
|
122 |
118 121
|
fsumcl |
|
123 |
62
|
recnd |
|
124 |
|
disjdif |
|
125 |
124
|
a1i |
|
126 |
|
undif |
|
127 |
117 126
|
sylib |
|
128 |
127
|
eqcomd |
|
129 |
125 128 14 120
|
fsumsplit |
|
130 |
122 123 129
|
mvrraddd |
|
131 |
112 130
|
breqtrd |
|