Metamath Proof Explorer


Theorem tgpconncompss

Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses tgpconncomp.x X = Base G
tgpconncomp.z 0 ˙ = 0 G
tgpconncomp.j J = TopOpen G
tgpconncomp.s S = x 𝒫 X | 0 ˙ x J 𝑡 x Conn
Assertion tgpconncompss G TopGrp T SubGrp G T J S T

Proof

Step Hyp Ref Expression
1 tgpconncomp.x X = Base G
2 tgpconncomp.z 0 ˙ = 0 G
3 tgpconncomp.j J = TopOpen G
4 tgpconncomp.s S = x 𝒫 X | 0 ˙ x J 𝑡 x Conn
5 3 1 tgptopon G TopGrp J TopOn X
6 5 3ad2ant1 G TopGrp T SubGrp G T J J TopOn X
7 simp3 G TopGrp T SubGrp G T J T J
8 3 opnsubg G TopGrp T SubGrp G T J T Clsd J
9 7 8 elind G TopGrp T SubGrp G T J T J Clsd J
10 2 subg0cl T SubGrp G 0 ˙ T
11 10 3ad2ant2 G TopGrp T SubGrp G T J 0 ˙ T
12 4 conncompclo J TopOn X T J Clsd J 0 ˙ T S T
13 6 9 11 12 syl3anc G TopGrp T SubGrp G T J S T