Metamath Proof Explorer


Theorem tgplacthmeo

Description: The left group action of element A in a topological group G is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgplacthmeo.1 F = x X A + ˙ x
tgplacthmeo.2 X = Base G
tgplacthmeo.3 + ˙ = + G
tgplacthmeo.4 J = TopOpen G
Assertion tgplacthmeo G TopGrp A X F J Homeo J

Proof

Step Hyp Ref Expression
1 tgplacthmeo.1 F = x X A + ˙ x
2 tgplacthmeo.2 X = Base G
3 tgplacthmeo.3 + ˙ = + G
4 tgplacthmeo.4 J = TopOpen G
5 tgptmd G TopGrp G TopMnd
6 1 2 3 4 tmdlactcn G TopMnd A X F J Cn J
7 5 6 sylan G TopGrp A X F J Cn J
8 tgpgrp G TopGrp G Grp
9 eqid g X x X g + ˙ x = g X x X g + ˙ x
10 eqid inv g G = inv g G
11 9 2 3 10 grplactcnv G Grp A X g X x X g + ˙ x A : X 1-1 onto X g X x X g + ˙ x A -1 = g X x X g + ˙ x inv g G A
12 8 11 sylan G TopGrp A X g X x X g + ˙ x A : X 1-1 onto X g X x X g + ˙ x A -1 = g X x X g + ˙ x inv g G A
13 12 simprd G TopGrp A X g X x X g + ˙ x A -1 = g X x X g + ˙ x inv g G A
14 9 2 grplactfval A X g X x X g + ˙ x A = x X A + ˙ x
15 14 adantl G TopGrp A X g X x X g + ˙ x A = x X A + ˙ x
16 15 1 eqtr4di G TopGrp A X g X x X g + ˙ x A = F
17 16 cnveqd G TopGrp A X g X x X g + ˙ x A -1 = F -1
18 2 10 grpinvcl G Grp A X inv g G A X
19 8 18 sylan G TopGrp A X inv g G A X
20 9 2 grplactfval inv g G A X g X x X g + ˙ x inv g G A = x X inv g G A + ˙ x
21 19 20 syl G TopGrp A X g X x X g + ˙ x inv g G A = x X inv g G A + ˙ x
22 13 17 21 3eqtr3d G TopGrp A X F -1 = x X inv g G A + ˙ x
23 eqid x X inv g G A + ˙ x = x X inv g G A + ˙ x
24 23 2 3 4 tmdlactcn G TopMnd inv g G A X x X inv g G A + ˙ x J Cn J
25 5 19 24 syl2an2r G TopGrp A X x X inv g G A + ˙ x J Cn J
26 22 25 eqeltrd G TopGrp A X F -1 J Cn J
27 ishmeo F J Homeo J F J Cn J F -1 J Cn J
28 7 26 27 sylanbrc G TopGrp A X F J Homeo J