Metamath Proof Explorer


Theorem tgpsubcn

Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of BourbakiTop1 p. III.1. (Contributed by FL, 21-Jun-2010) (Revised by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses tgpsubcn.2 J = TopOpen G
tgpsubcn.3 - ˙ = - G
Assertion tgpsubcn G TopGrp - ˙ J × t J Cn J

Proof

Step Hyp Ref Expression
1 tgpsubcn.2 J = TopOpen G
2 tgpsubcn.3 - ˙ = - G
3 eqid Base G = Base G
4 eqid + G = + G
5 eqid inv g G = inv g G
6 3 4 5 2 grpsubfval - ˙ = x Base G , y Base G x + G inv g G y
7 tgptmd G TopGrp G TopMnd
8 1 3 tgptopon G TopGrp J TopOn Base G
9 8 8 cnmpt1st G TopGrp x Base G , y Base G x J × t J Cn J
10 8 8 cnmpt2nd G TopGrp x Base G , y Base G y J × t J Cn J
11 1 5 tgpinv G TopGrp inv g G J Cn J
12 8 8 10 11 cnmpt21f G TopGrp x Base G , y Base G inv g G y J × t J Cn J
13 1 4 7 8 8 9 12 cnmpt2plusg G TopGrp x Base G , y Base G x + G inv g G y J × t J Cn J
14 6 13 eqeltrid G TopGrp - ˙ J × t J Cn J