Step |
Hyp |
Ref |
Expression |
1 |
|
tgpt1.j |
|
2 |
1
|
tgpt1 |
|
3 |
|
t1t0 |
|
4 |
|
eleq2 |
|
5 |
|
eleq2 |
|
6 |
4 5
|
imbi12d |
|
7 |
6
|
rspccva |
|
8 |
7
|
adantll |
|
9 |
|
tgpgrp |
|
10 |
9
|
ad3antrrr |
|
11 |
|
simpllr |
|
12 |
11
|
simprd |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
13 14 15
|
grpsubid |
|
17 |
10 12 16
|
syl2anc |
|
18 |
17
|
oveq1d |
|
19 |
11
|
simpld |
|
20 |
|
eqid |
|
21 |
13 20 14
|
grplid |
|
22 |
10 19 21
|
syl2anc |
|
23 |
18 22
|
eqtrd |
|
24 |
13 20 15
|
grpnpcan |
|
25 |
10 12 19 24
|
syl3anc |
|
26 |
|
simprr |
|
27 |
25 26
|
eqeltrd |
|
28 |
|
oveq2 |
|
29 |
28
|
oveq1d |
|
30 |
29
|
eleq1d |
|
31 |
|
eqid |
|
32 |
31
|
mptpreima |
|
33 |
30 32
|
elrab2 |
|
34 |
19 27 33
|
sylanbrc |
|
35 |
|
eleq2 |
|
36 |
|
eleq2 |
|
37 |
35 36
|
imbi12d |
|
38 |
|
simplr |
|
39 |
|
tgptmd |
|
40 |
39
|
ad3antrrr |
|
41 |
1 13
|
tgptopon |
|
42 |
41
|
ad3antrrr |
|
43 |
42 42 12
|
cnmptc |
|
44 |
42
|
cnmptid |
|
45 |
1 15
|
tgpsubcn |
|
46 |
45
|
ad3antrrr |
|
47 |
42 43 44 46
|
cnmpt12f |
|
48 |
42 42 19
|
cnmptc |
|
49 |
1 20 40 42 47 48
|
cnmpt1plusg |
|
50 |
|
simprl |
|
51 |
|
cnima |
|
52 |
49 50 51
|
syl2anc |
|
53 |
37 38 52
|
rspcdva |
|
54 |
34 53
|
mpd |
|
55 |
|
oveq2 |
|
56 |
55
|
oveq1d |
|
57 |
56
|
eleq1d |
|
58 |
57 32
|
elrab2 |
|
59 |
58
|
simprbi |
|
60 |
54 59
|
syl |
|
61 |
23 60
|
eqeltrrd |
|
62 |
61
|
expr |
|
63 |
8 62
|
impbid |
|
64 |
63
|
ralrimiva |
|
65 |
64
|
ex |
|
66 |
65
|
imim1d |
|
67 |
66
|
ralimdvva |
|
68 |
|
ist0-2 |
|
69 |
41 68
|
syl |
|
70 |
|
ist1-2 |
|
71 |
41 70
|
syl |
|
72 |
67 69 71
|
3imtr4d |
|
73 |
3 72
|
impbid2 |
|
74 |
2 73
|
bitrd |
|