Metamath Proof Explorer


Theorem tgpt1

Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypothesis tgpt1.j J = TopOpen G
Assertion tgpt1 G TopGrp J Haus J Fre

Proof

Step Hyp Ref Expression
1 tgpt1.j J = TopOpen G
2 haust1 J Haus J Fre
3 tgpgrp G TopGrp G Grp
4 eqid Base G = Base G
5 eqid 0 G = 0 G
6 4 5 grpidcl G Grp 0 G Base G
7 3 6 syl G TopGrp 0 G Base G
8 1 4 tgptopon G TopGrp J TopOn Base G
9 toponuni J TopOn Base G Base G = J
10 8 9 syl G TopGrp Base G = J
11 7 10 eleqtrd G TopGrp 0 G J
12 eqid J = J
13 12 t1sncld J Fre 0 G J 0 G Clsd J
14 13 expcom 0 G J J Fre 0 G Clsd J
15 11 14 syl G TopGrp J Fre 0 G Clsd J
16 5 1 tgphaus G TopGrp J Haus 0 G Clsd J
17 15 16 sylibrd G TopGrp J Fre J Haus
18 2 17 impbid2 G TopGrp J Haus J Fre