Metamath Proof Explorer


Theorem tgptmd

Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Assertion tgptmd G TopGrp G TopMnd

Proof

Step Hyp Ref Expression
1 eqid TopOpen G = TopOpen G
2 eqid inv g G = inv g G
3 1 2 istgp G TopGrp G Grp G TopMnd inv g G TopOpen G Cn TopOpen G
4 3 simp2bi G TopGrp G TopMnd