Metamath Proof Explorer


Theorem tgptopon

Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J=TopOpenG
tgptopon.x X=BaseG
Assertion tgptopon GTopGrpJTopOnX

Proof

Step Hyp Ref Expression
1 tgpcn.j J=TopOpenG
2 tgptopon.x X=BaseG
3 tgptps GTopGrpGTopSp
4 2 1 istps GTopSpJTopOnX
5 3 4 sylib GTopGrpJTopOnX