Metamath Proof Explorer


Theorem tgptopon

Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J = TopOpen G
tgptopon.x X = Base G
Assertion tgptopon G TopGrp J TopOn X

Proof

Step Hyp Ref Expression
1 tgpcn.j J = TopOpen G
2 tgptopon.x X = Base G
3 tgptps G TopGrp G TopSp
4 2 1 istps G TopSp J TopOn X
5 3 4 sylib G TopGrp J TopOn X