Metamath Proof Explorer


Theorem tgptsmscld

Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses tgptsmscls.b B = Base G
tgptsmscls.j J = TopOpen G
tgptsmscls.1 φ G CMnd
tgptsmscls.2 φ G TopGrp
tgptsmscls.a φ A V
tgptsmscls.f φ F : A B
Assertion tgptsmscld φ G tsums F Clsd J

Proof

Step Hyp Ref Expression
1 tgptsmscls.b B = Base G
2 tgptsmscls.j J = TopOpen G
3 tgptsmscls.1 φ G CMnd
4 tgptsmscls.2 φ G TopGrp
5 tgptsmscls.a φ A V
6 tgptsmscls.f φ F : A B
7 2 1 tgptopon G TopGrp J TopOn B
8 4 7 syl φ J TopOn B
9 topontop J TopOn B J Top
10 8 9 syl φ J Top
11 0cld J Top Clsd J
12 10 11 syl φ Clsd J
13 eleq1 G tsums F = G tsums F Clsd J Clsd J
14 12 13 syl5ibrcom φ G tsums F = G tsums F Clsd J
15 n0 G tsums F x x G tsums F
16 3 adantr φ x G tsums F G CMnd
17 4 adantr φ x G tsums F G TopGrp
18 5 adantr φ x G tsums F A V
19 6 adantr φ x G tsums F F : A B
20 simpr φ x G tsums F x G tsums F
21 1 2 16 17 18 19 20 tgptsmscls φ x G tsums F G tsums F = cls J x
22 tgptps G TopGrp G TopSp
23 4 22 syl φ G TopSp
24 1 3 23 5 6 tsmscl φ G tsums F B
25 toponuni J TopOn B B = J
26 8 25 syl φ B = J
27 24 26 sseqtrd φ G tsums F J
28 27 sselda φ x G tsums F x J
29 28 snssd φ x G tsums F x J
30 eqid J = J
31 30 clscld J Top x J cls J x Clsd J
32 10 29 31 syl2an2r φ x G tsums F cls J x Clsd J
33 21 32 eqeltrd φ x G tsums F G tsums F Clsd J
34 33 ex φ x G tsums F G tsums F Clsd J
35 34 exlimdv φ x x G tsums F G tsums F Clsd J
36 15 35 syl5bi φ G tsums F G tsums F Clsd J
37 14 36 pm2.61dne φ G tsums F Clsd J