Step |
Hyp |
Ref |
Expression |
1 |
|
tgptsmscls.b |
|
2 |
|
tgptsmscls.j |
|
3 |
|
tgptsmscls.1 |
|
4 |
|
tgptsmscls.2 |
|
5 |
|
tgptsmscls.a |
|
6 |
|
tgptsmscls.f |
|
7 |
|
tgptsmscls.x |
|
8 |
4
|
adantr |
|
9 |
|
tgpgrp |
|
10 |
8 9
|
syl |
|
11 |
|
eqid |
|
12 |
11
|
0subg |
|
13 |
10 12
|
syl |
|
14 |
2
|
clssubg |
|
15 |
8 13 14
|
syl2anc |
|
16 |
|
eqid |
|
17 |
1 16
|
eqger |
|
18 |
15 17
|
syl |
|
19 |
|
tgptps |
|
20 |
4 19
|
syl |
|
21 |
1 3 20 5 6
|
tsmscl |
|
22 |
21
|
sselda |
|
23 |
21 7
|
sseldd |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
3
|
adantr |
|
27 |
5
|
adantr |
|
28 |
6
|
adantr |
|
29 |
7
|
adantr |
|
30 |
|
simpr |
|
31 |
1 25 26 8 27 28 28 29 30
|
tsmssub |
|
32 |
28
|
ffvelrnda |
|
33 |
28
|
feqmptd |
|
34 |
27 32 32 33 33
|
offval2 |
|
35 |
10
|
adantr |
|
36 |
1 11 25
|
grpsubid |
|
37 |
35 32 36
|
syl2anc |
|
38 |
37
|
mpteq2dva |
|
39 |
34 38
|
eqtrd |
|
40 |
39
|
oveq2d |
|
41 |
8 19
|
syl |
|
42 |
1 11
|
grpidcl |
|
43 |
10 42
|
syl |
|
44 |
43
|
adantr |
|
45 |
44
|
fmpttd |
|
46 |
|
fconstmpt |
|
47 |
|
fvexd |
|
48 |
5 47
|
fczfsuppd |
|
49 |
48
|
adantr |
|
50 |
46 49
|
eqbrtrrid |
|
51 |
1 11 26 41 27 45 50 2
|
tsmsgsum |
|
52 |
|
cmnmnd |
|
53 |
26 52
|
syl |
|
54 |
11
|
gsumz |
|
55 |
53 27 54
|
syl2anc |
|
56 |
55
|
sneqd |
|
57 |
56
|
fveq2d |
|
58 |
40 51 57
|
3eqtrd |
|
59 |
31 58
|
eleqtrd |
|
60 |
|
isabl |
|
61 |
10 26 60
|
sylanbrc |
|
62 |
1
|
subgss |
|
63 |
15 62
|
syl |
|
64 |
1 25 16
|
eqgabl |
|
65 |
61 63 64
|
syl2anc |
|
66 |
22 24 59 65
|
mpbir3and |
|
67 |
18 66
|
ersym |
|
68 |
16
|
releqg |
|
69 |
|
relelec |
|
70 |
68 69
|
ax-mp |
|
71 |
67 70
|
sylibr |
|
72 |
|
eqid |
|
73 |
1 2 11 16 72
|
snclseqg |
|
74 |
8 24 73
|
syl2anc |
|
75 |
71 74
|
eleqtrd |
|
76 |
75
|
ex |
|
77 |
76
|
ssrdv |
|
78 |
1 2 3 20 5 6 7
|
tsmscls |
|
79 |
77 78
|
eqssd |
|