| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
|
| 2 |
|
eltg3 |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
simpll |
|
| 5 |
|
funmpt |
|
| 6 |
5
|
a1i |
|
| 7 |
|
restval |
|
| 8 |
7
|
sseq2d |
|
| 9 |
8
|
biimpa |
|
| 10 |
|
vex |
|
| 11 |
10
|
inex1 |
|
| 12 |
11
|
rgenw |
|
| 13 |
|
eqid |
|
| 14 |
13
|
fnmpt |
|
| 15 |
|
fnima |
|
| 16 |
12 14 15
|
mp2b |
|
| 17 |
9 16
|
sseqtrrdi |
|
| 18 |
|
ssimaexg |
|
| 19 |
4 6 17 18
|
syl3anc |
|
| 20 |
|
df-ima |
|
| 21 |
|
resmpt |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
rneqd |
|
| 24 |
20 23
|
eqtrid |
|
| 25 |
24
|
unieqd |
|
| 26 |
11
|
dfiun3 |
|
| 27 |
25 26
|
eqtr4di |
|
| 28 |
|
iunin1 |
|
| 29 |
27 28
|
eqtrdi |
|
| 30 |
|
fvex |
|
| 31 |
|
simpr |
|
| 32 |
|
uniiun |
|
| 33 |
|
eltg3i |
|
| 34 |
32 33
|
eqeltrrid |
|
| 35 |
34
|
adantlr |
|
| 36 |
|
elrestr |
|
| 37 |
30 31 35 36
|
mp3an2ani |
|
| 38 |
29 37
|
eqeltrd |
|
| 39 |
|
unieq |
|
| 40 |
39
|
eleq1d |
|
| 41 |
38 40
|
syl5ibrcom |
|
| 42 |
41
|
expimpd |
|
| 43 |
42
|
exlimdv |
|
| 44 |
43
|
adantr |
|
| 45 |
19 44
|
mpd |
|
| 46 |
|
eleq1 |
|
| 47 |
45 46
|
syl5ibrcom |
|
| 48 |
47
|
expimpd |
|
| 49 |
48
|
exlimdv |
|
| 50 |
3 49
|
biimtrid |
|
| 51 |
50
|
ssrdv |
|
| 52 |
|
restval |
|
| 53 |
30 31 52
|
sylancr |
|
| 54 |
|
eltg3 |
|
| 55 |
54
|
adantr |
|
| 56 |
32
|
ineq1i |
|
| 57 |
56 28
|
eqtr4i |
|
| 58 |
|
simplll |
|
| 59 |
|
simpllr |
|
| 60 |
|
simpr |
|
| 61 |
60
|
sselda |
|
| 62 |
|
elrestr |
|
| 63 |
58 59 61 62
|
syl3anc |
|
| 64 |
63
|
fmpttd |
|
| 65 |
64
|
frnd |
|
| 66 |
|
eltg3i |
|
| 67 |
1 65 66
|
sylancr |
|
| 68 |
26 67
|
eqeltrid |
|
| 69 |
57 68
|
eqeltrid |
|
| 70 |
|
ineq1 |
|
| 71 |
70
|
eleq1d |
|
| 72 |
69 71
|
syl5ibrcom |
|
| 73 |
72
|
expimpd |
|
| 74 |
73
|
exlimdv |
|
| 75 |
55 74
|
sylbid |
|
| 76 |
75
|
imp |
|
| 77 |
76
|
fmpttd |
|
| 78 |
77
|
frnd |
|
| 79 |
53 78
|
eqsstrd |
|
| 80 |
51 79
|
eqssd |
|