Database
BASIC TOPOLOGY
Topology
Topological bases
tgss
Next ⟩
tgcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
tgss
Description:
Subset relation for generated topologies.
(Contributed by
NM
, 7-May-2007)
Ref
Expression
Assertion
tgss
⊢
C
∈
V
∧
B
⊆
C
→
topGen
⁡
B
⊆
topGen
⁡
C
Proof
Step
Hyp
Ref
Expression
1
ssrin
⊢
B
⊆
C
→
B
∩
𝒫
x
⊆
C
∩
𝒫
x
2
1
unissd
⊢
B
⊆
C
→
⋃
B
∩
𝒫
x
⊆
⋃
C
∩
𝒫
x
3
sstr2
⊢
x
⊆
⋃
B
∩
𝒫
x
→
⋃
B
∩
𝒫
x
⊆
⋃
C
∩
𝒫
x
→
x
⊆
⋃
C
∩
𝒫
x
4
2
3
syl5com
⊢
B
⊆
C
→
x
⊆
⋃
B
∩
𝒫
x
→
x
⊆
⋃
C
∩
𝒫
x
5
4
adantl
⊢
C
∈
V
∧
B
⊆
C
→
x
⊆
⋃
B
∩
𝒫
x
→
x
⊆
⋃
C
∩
𝒫
x
6
ssexg
⊢
B
⊆
C
∧
C
∈
V
→
B
∈
V
7
6
ancoms
⊢
C
∈
V
∧
B
⊆
C
→
B
∈
V
8
eltg
⊢
B
∈
V
→
x
∈
topGen
⁡
B
↔
x
⊆
⋃
B
∩
𝒫
x
9
7
8
syl
⊢
C
∈
V
∧
B
⊆
C
→
x
∈
topGen
⁡
B
↔
x
⊆
⋃
B
∩
𝒫
x
10
eltg
⊢
C
∈
V
→
x
∈
topGen
⁡
C
↔
x
⊆
⋃
C
∩
𝒫
x
11
10
adantr
⊢
C
∈
V
∧
B
⊆
C
→
x
∈
topGen
⁡
C
↔
x
⊆
⋃
C
∩
𝒫
x
12
5
9
11
3imtr4d
⊢
C
∈
V
∧
B
⊆
C
→
x
∈
topGen
⁡
B
→
x
∈
topGen
⁡
C
13
12
ssrdv
⊢
C
∈
V
∧
B
⊆
C
→
topGen
⁡
B
⊆
topGen
⁡
C