Metamath Proof Explorer


Theorem tgsss3

Description: Third congruence theorem: SSS. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses tgsas.p P = Base G
tgsas.m - ˙ = dist G
tgsas.i I = Itv G
tgsas.g φ G 𝒢 Tarski
tgsas.a φ A P
tgsas.b φ B P
tgsas.c φ C P
tgsas.d φ D P
tgsas.e φ E P
tgsas.f φ F P
tgsss.1 φ A - ˙ B = D - ˙ E
tgsss.2 φ B - ˙ C = E - ˙ F
tgsss.3 φ C - ˙ A = F - ˙ D
tgsss.4 φ A B
tgsss.5 φ B C
tgsss.6 φ C A
Assertion tgsss3 φ ⟨“ BCA ”⟩ 𝒢 G ⟨“ EFD ”⟩

Proof

Step Hyp Ref Expression
1 tgsas.p P = Base G
2 tgsas.m - ˙ = dist G
3 tgsas.i I = Itv G
4 tgsas.g φ G 𝒢 Tarski
5 tgsas.a φ A P
6 tgsas.b φ B P
7 tgsas.c φ C P
8 tgsas.d φ D P
9 tgsas.e φ E P
10 tgsas.f φ F P
11 tgsss.1 φ A - ˙ B = D - ˙ E
12 tgsss.2 φ B - ˙ C = E - ˙ F
13 tgsss.3 φ C - ˙ A = F - ˙ D
14 tgsss.4 φ A B
15 tgsss.5 φ B C
16 tgsss.6 φ C A
17 1 2 3 4 6 7 5 9 10 8 12 13 11 15 16 14 tgsss1 φ ⟨“ BCA ”⟩ 𝒢 G ⟨“ EFD ”⟩