Database
BASIC TOPOLOGY
Topology
Topological bases
tgtop
Next ⟩
eltop
Metamath Proof Explorer
Ascii
Unicode
Theorem
tgtop
Description:
A topology is its own basis.
(Contributed by
NM
, 18-Jul-2006)
Ref
Expression
Assertion
tgtop
⊢
J
∈
Top
→
topGen
⁡
J
=
J
Proof
Step
Hyp
Ref
Expression
1
eltg3
⊢
J
∈
Top
→
x
∈
topGen
⁡
J
↔
∃
y
y
⊆
J
∧
x
=
⋃
y
2
simpr
⊢
J
∈
Top
∧
y
⊆
J
∧
x
=
⋃
y
→
x
=
⋃
y
3
uniopn
⊢
J
∈
Top
∧
y
⊆
J
→
⋃
y
∈
J
4
3
adantr
⊢
J
∈
Top
∧
y
⊆
J
∧
x
=
⋃
y
→
⋃
y
∈
J
5
2
4
eqeltrd
⊢
J
∈
Top
∧
y
⊆
J
∧
x
=
⋃
y
→
x
∈
J
6
5
expl
⊢
J
∈
Top
→
y
⊆
J
∧
x
=
⋃
y
→
x
∈
J
7
6
exlimdv
⊢
J
∈
Top
→
∃
y
y
⊆
J
∧
x
=
⋃
y
→
x
∈
J
8
1
7
sylbid
⊢
J
∈
Top
→
x
∈
topGen
⁡
J
→
x
∈
J
9
8
ssrdv
⊢
J
∈
Top
→
topGen
⁡
J
⊆
J
10
bastg
⊢
J
∈
Top
→
J
⊆
topGen
⁡
J
11
9
10
eqssd
⊢
J
∈
Top
→
topGen
⁡
J
=
J