Metamath Proof Explorer


Theorem tgtrisegint

Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of Schwabhauser p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnintr.1 φ A P
tgbtwnintr.2 φ B P
tgbtwnintr.3 φ C P
tgbtwnintr.4 φ D P
tgtrisegint.e φ E P
tgtrisegint.p φ F P
tgtrisegint.1 φ B A I C
tgtrisegint.2 φ E D I C
tgtrisegint.3 φ F A I D
Assertion tgtrisegint φ q P q F I C q B I E

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnintr.1 φ A P
6 tgbtwnintr.2 φ B P
7 tgbtwnintr.3 φ C P
8 tgbtwnintr.4 φ D P
9 tgtrisegint.e φ E P
10 tgtrisegint.p φ F P
11 tgtrisegint.1 φ B A I C
12 tgtrisegint.2 φ E D I C
13 tgtrisegint.3 φ F A I D
14 4 ad2antrr φ r P r E I A r F I C G 𝒢 Tarski
15 9 ad2antrr φ r P r E I A r F I C E P
16 7 ad2antrr φ r P r E I A r F I C C P
17 5 ad2antrr φ r P r E I A r F I C A P
18 simplr φ r P r E I A r F I C r P
19 6 ad2antrr φ r P r E I A r F I C B P
20 simprl φ r P r E I A r F I C r E I A
21 11 ad2antrr φ r P r E I A r F I C B A I C
22 1 2 3 14 17 19 16 21 tgbtwncom φ r P r E I A r F I C B C I A
23 1 2 3 14 15 16 17 18 19 20 22 axtgpasch φ r P r E I A r F I C q P q r I C q B I E
24 14 ad2antrr φ r P r E I A r F I C q P q r I C G 𝒢 Tarski
25 10 ad2antrr φ r P r E I A r F I C F P
26 25 ad2antrr φ r P r E I A r F I C q P q r I C F P
27 18 ad2antrr φ r P r E I A r F I C q P q r I C r P
28 simplr φ r P r E I A r F I C q P q r I C q P
29 16 ad2antrr φ r P r E I A r F I C q P q r I C C P
30 simprr φ r P r E I A r F I C r F I C
31 30 ad2antrr φ r P r E I A r F I C q P q r I C r F I C
32 simpr φ r P r E I A r F I C q P q r I C q r I C
33 1 2 3 24 26 27 28 29 31 32 tgbtwnexch2 φ r P r E I A r F I C q P q r I C q F I C
34 33 ex φ r P r E I A r F I C q P q r I C q F I C
35 34 anim1d φ r P r E I A r F I C q P q r I C q B I E q F I C q B I E
36 35 reximdva φ r P r E I A r F I C q P q r I C q B I E q P q F I C q B I E
37 23 36 mpd φ r P r E I A r F I C q P q F I C q B I E
38 1 2 3 4 8 9 7 12 tgbtwncom φ E C I D
39 1 2 3 4 7 5 8 9 10 38 13 axtgpasch φ r P r E I A r F I C
40 37 39 r19.29a φ q P q F I C q B I E