Metamath Proof Explorer


Theorem thincc

Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Assertion thincc Could not format assertion : No typesetting found for |- ( C e. ThinCat -> C e. Cat ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid Base C = Base C
2 eqid Hom C = Hom C
3 1 2 isthinc Could not format ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) : No typesetting found for |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) with typecode |-
4 3 simplbi Could not format ( C e. ThinCat -> C e. Cat ) : No typesetting found for |- ( C e. ThinCat -> C e. Cat ) with typecode |-