Metamath Proof Explorer


Theorem thincepi

Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincid.b B=BaseC
thincid.h H=HomC
thincid.x φXB
thincmon.y φYB
thincepi.e E=EpiC
Assertion thincepi φXEY=XHY

Proof

Step Hyp Ref Expression
1 thincid.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincid.b B=BaseC
3 thincid.h H=HomC
4 thincid.x φXB
5 thincmon.y φYB
6 thincepi.e E=EpiC
7 5 adantr φzBgYHzhYHzYB
8 simpr1 φzBgYHzhYHzzB
9 simpr2 φzBgYHzhYHzgYHz
10 simpr3 φzBgYHzhYHzhYHz
11 1 adantr Could not format ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> C e. ThinCat ) with typecode |-
12 7 8 9 10 2 3 11 thincmo2 φzBgYHzhYHzg=h
13 12 a1d φzBgYHzhYHzgXYcompCzf=hXYcompCzfg=h
14 13 ralrimivvva φzBgYHzhYHzgXYcompCzf=hXYcompCzfg=h
15 eqid compC=compC
16 1 thinccd φCCat
17 2 3 15 6 16 4 5 isepi2 φfXEYfXHYzBgYHzhYHzgXYcompCzf=hXYcompCzfg=h
18 14 17 mpbiran2d φfXEYfXHY
19 18 eqrdv φXEY=XHY