Metamath Proof Explorer


Theorem thincfth

Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses thincfth.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincfth.f φ F C Func D G
Assertion thincfth φ F C Faith D G

Proof

Step Hyp Ref Expression
1 thincfth.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincfth.f φ F C Func D G
3 1 adantr Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) with typecode |-
4 simprl φ x Base C y Base C x Base C
5 simprr φ x Base C y Base C y Base C
6 eqid Base C = Base C
7 eqid Hom C = Hom C
8 3 4 5 6 7 thincmo φ x Base C y Base C * f f x Hom C y
9 eqid Hom D = Hom D
10 2 adantr φ x Base C y Base C F C Func D G
11 6 7 9 10 4 5 funcf2 φ x Base C y Base C x G y : x Hom C y F x Hom D F y
12 f1mo * f f x Hom C y x G y : x Hom C y F x Hom D F y x G y : x Hom C y 1-1 F x Hom D F y
13 8 11 12 syl2anc φ x Base C y Base C x G y : x Hom C y 1-1 F x Hom D F y
14 13 ralrimivva φ x Base C y Base C x G y : x Hom C y 1-1 F x Hom D F y
15 6 7 9 isfth2 F C Faith D G F C Func D G x Base C y Base C x G y : x Hom C y 1-1 F x Hom D F y
16 2 14 15 sylanbrc φ F C Faith D G