Metamath Proof Explorer


Theorem thinchom

Description: A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses thinchom.x φ X B
thinchom.y φ Y B
thinchom.f φ F X H Y
thinchom.b B = Base C
thinchom.h H = Hom C
thinchom.c φ C ThinCat
Assertion thinchom φ X H Y = F

Proof

Step Hyp Ref Expression
1 thinchom.x φ X B
2 thinchom.y φ Y B
3 thinchom.f φ F X H Y
4 thinchom.b B = Base C
5 thinchom.h H = Hom C
6 thinchom.c φ C ThinCat
7 1 adantr φ g X H Y X B
8 2 adantr φ g X H Y Y B
9 simpr φ g X H Y g X H Y
10 3 adantr φ g X H Y F X H Y
11 6 adantr φ g X H Y C ThinCat
12 7 8 9 10 4 5 11 thincmo2 φ g X H Y g = F
13 12 3 eqsnd φ X H Y = F