Metamath Proof Explorer


Theorem thincid

Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincid.b B = Base C
thincid.h H = Hom C
thincid.x φ X B
thincid.i 1 ˙ = Id C
thincid.f φ F X H X
Assertion thincid φ F = 1 ˙ X

Proof

Step Hyp Ref Expression
1 thincid.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincid.b B = Base C
3 thincid.h H = Hom C
4 thincid.x φ X B
5 thincid.i 1 ˙ = Id C
6 thincid.f φ F X H X
7 1 thinccd φ C Cat
8 2 3 5 7 4 catidcl φ 1 ˙ X X H X
9 4 4 6 8 2 3 1 thincmo2 φ F = 1 ˙ X