Metamath Proof Explorer


Theorem thincinv

Description: In a thin category, F is an inverse of G iff F is a section of G (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B = Base C
thincsect.x φ X B
thincsect.y φ Y B
thincsect.s S = Sect C
thincinv.n N = Inv C
Assertion thincinv φ F X N Y G F X S Y G

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B = Base C
3 thincsect.x φ X B
4 thincsect.y φ Y B
5 thincsect.s S = Sect C
6 thincinv.n N = Inv C
7 1 thinccd φ C Cat
8 2 6 7 3 4 5 isinv φ F X N Y G F X S Y G G Y S X F
9 1 2 3 4 5 thincsect2 φ F X S Y G G Y S X F
10 9 biimpa φ F X S Y G G Y S X F
11 8 10 mpbiran3d φ F X N Y G F X S Y G