Metamath Proof Explorer


Theorem thincmo

Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses thincmo.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincmo.x φ X B
thincmo.y φ Y B
thincmo.b B = Base C
thincmo.h H = Hom C
Assertion thincmo φ * f f X H Y

Proof

Step Hyp Ref Expression
1 thincmo.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincmo.x φ X B
3 thincmo.y φ Y B
4 thincmo.b B = Base C
5 thincmo.h H = Hom C
6 2 adantr φ f X H Y g X H Y X B
7 3 adantr φ f X H Y g X H Y Y B
8 simprl φ f X H Y g X H Y f X H Y
9 simprr φ f X H Y g X H Y g X H Y
10 1 adantr Could not format ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. ThinCat ) with typecode |-
11 6 7 8 9 4 5 10 thincmo2 φ f X H Y g X H Y f = g
12 11 ex φ f X H Y g X H Y f = g
13 12 alrimivv φ f g f X H Y g X H Y f = g
14 eleq1w f = g f X H Y g X H Y
15 14 mo4 * f f X H Y f g f X H Y g X H Y f = g
16 13 15 sylibr φ * f f X H Y