Metamath Proof Explorer


Theorem thincmo

Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses thincmo.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincmo.x φXB
thincmo.y φYB
thincmo.b B=BaseC
thincmo.h H=HomC
Assertion thincmo φ*ffXHY

Proof

Step Hyp Ref Expression
1 thincmo.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincmo.x φXB
3 thincmo.y φYB
4 thincmo.b B=BaseC
5 thincmo.h H=HomC
6 2 adantr φfXHYgXHYXB
7 3 adantr φfXHYgXHYYB
8 simprl φfXHYgXHYfXHY
9 simprr φfXHYgXHYgXHY
10 1 adantr Could not format ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. ThinCat ) with typecode |-
11 6 7 8 9 4 5 10 thincmo2 φfXHYgXHYf=g
12 11 ex φfXHYgXHYf=g
13 12 alrimivv φfgfXHYgXHYf=g
14 eleq1w f=gfXHYgXHY
15 14 mo4 *ffXHYfgfXHYgXHYf=g
16 13 15 sylibr φ*ffXHY