Metamath Proof Explorer


Theorem thincmo2

Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem1.1 φ X B
isthincd2lem1.2 φ Y B
isthincd2lem1.3 φ F X H Y
isthincd2lem1.4 φ G X H Y
thincmo2.b B = Base C
thincmo2.h H = Hom C
thincmo2.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
Assertion thincmo2 φ F = G

Proof

Step Hyp Ref Expression
1 isthincd2lem1.1 φ X B
2 isthincd2lem1.2 φ Y B
3 isthincd2lem1.3 φ F X H Y
4 isthincd2lem1.4 φ G X H Y
5 thincmo2.b B = Base C
6 thincmo2.h H = Hom C
7 thincmo2.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
8 5 6 isthinc Could not format ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) : No typesetting found for |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) with typecode |-
9 8 simprbi Could not format ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) : No typesetting found for |- ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) with typecode |-
10 7 9 syl φ x B y B * f f x H y
11 1 2 3 4 10 isthincd2lem1 φ F = G