Metamath Proof Explorer


Theorem thincmo2

Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem1.1 φXB
isthincd2lem1.2 φYB
isthincd2lem1.3 φFXHY
isthincd2lem1.4 φGXHY
thincmo2.b B=BaseC
thincmo2.h H=HomC
thincmo2.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
Assertion thincmo2 φF=G

Proof

Step Hyp Ref Expression
1 isthincd2lem1.1 φXB
2 isthincd2lem1.2 φYB
3 isthincd2lem1.3 φFXHY
4 isthincd2lem1.4 φGXHY
5 thincmo2.b B=BaseC
6 thincmo2.h H=HomC
7 thincmo2.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
8 5 6 isthinc Could not format ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) : No typesetting found for |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) with typecode |-
9 8 simprbi Could not format ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) : No typesetting found for |- ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) with typecode |-
10 7 9 syl φxByB*ffxHy
11 1 2 3 4 10 isthincd2lem1 φF=G