Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
thincmo2
Next ⟩
thincmo
Metamath Proof Explorer
Ascii
Unicode
Theorem
thincmo2
Description:
Morphisms in the same hom-set are identical.
(Contributed by
Zhi Wang
, 17-Sep-2024)
Ref
Expression
Hypotheses
isthincd2lem1.1
⊢
φ
→
X
∈
B
isthincd2lem1.2
⊢
φ
→
Y
∈
B
isthincd2lem1.3
⊢
φ
→
F
∈
X
H
Y
isthincd2lem1.4
⊢
φ
→
G
∈
X
H
Y
thincmo2.b
⊢
B
=
Base
C
thincmo2.h
⊢
H
=
Hom
⁡
C
thincmo2.c
⊢
φ
→
C
∈
ThinCat
Assertion
thincmo2
⊢
φ
→
F
=
G
Proof
Step
Hyp
Ref
Expression
1
isthincd2lem1.1
⊢
φ
→
X
∈
B
2
isthincd2lem1.2
⊢
φ
→
Y
∈
B
3
isthincd2lem1.3
⊢
φ
→
F
∈
X
H
Y
4
isthincd2lem1.4
⊢
φ
→
G
∈
X
H
Y
5
thincmo2.b
⊢
B
=
Base
C
6
thincmo2.h
⊢
H
=
Hom
⁡
C
7
thincmo2.c
⊢
φ
→
C
∈
ThinCat
8
5
6
isthinc
⊢
C
∈
ThinCat
↔
C
∈
Cat
∧
∀
x
∈
B
∀
y
∈
B
∃
*
f
f
∈
x
H
y
9
8
simprbi
⊢
C
∈
ThinCat
→
∀
x
∈
B
∀
y
∈
B
∃
*
f
f
∈
x
H
y
10
7
9
syl
⊢
φ
→
∀
x
∈
B
∀
y
∈
B
∃
*
f
f
∈
x
H
y
11
1
2
3
4
10
isthincd2lem1
⊢
φ
→
F
=
G