Metamath Proof Explorer


Theorem thincmod

Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses thincmo.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincmo.x φ X B
thincmo.y φ Y B
thincn0eu.b φ B = Base C
thincn0eu.h φ H = Hom C
Assertion thincmod φ * f f X H Y

Proof

Step Hyp Ref Expression
1 thincmo.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincmo.x φ X B
3 thincmo.y φ Y B
4 thincn0eu.b φ B = Base C
5 thincn0eu.h φ H = Hom C
6 2 4 eleqtrd φ X Base C
7 3 4 eleqtrd φ Y Base C
8 eqid Base C = Base C
9 eqid Hom C = Hom C
10 1 6 7 8 9 thincmo φ * f f X Hom C Y
11 5 oveqd φ X H Y = X Hom C Y
12 11 eleq2d φ f X H Y f X Hom C Y
13 12 mobidv φ * f f X H Y * f f X Hom C Y
14 10 13 mpbird φ * f f X H Y