Metamath Proof Explorer


Theorem thincmon

Description: In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincid.b B = Base C
thincid.h H = Hom C
thincid.x φ X B
thincmon.y φ Y B
thincmon.m M = Mono C
Assertion thincmon φ X M Y = X H Y

Proof

Step Hyp Ref Expression
1 thincid.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincid.b B = Base C
3 thincid.h H = Hom C
4 thincid.x φ X B
5 thincmon.y φ Y B
6 thincmon.m M = Mono C
7 simpr1 φ z B g z H X h z H X z B
8 4 adantr φ z B g z H X h z H X X B
9 simpr2 φ z B g z H X h z H X g z H X
10 simpr3 φ z B g z H X h z H X h z H X
11 1 adantr Could not format ( ( ph /\ ( z e. B /\ g e. ( z H X ) /\ h e. ( z H X ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( z e. B /\ g e. ( z H X ) /\ h e. ( z H X ) ) ) -> C e. ThinCat ) with typecode |-
12 7 8 9 10 2 3 11 thincmo2 φ z B g z H X h z H X g = h
13 12 a1d φ z B g z H X h z H X f z X comp C Y g = f z X comp C Y h g = h
14 13 ralrimivvva φ z B g z H X h z H X f z X comp C Y g = f z X comp C Y h g = h
15 eqid comp C = comp C
16 1 thinccd φ C Cat
17 2 3 15 6 16 4 5 ismon2 φ f X M Y f X H Y z B g z H X h z H X f z X comp C Y g = f z X comp C Y h g = h
18 14 17 mpbiran2d φ f X M Y f X H Y
19 18 eqrdv φ X M Y = X H Y