Metamath Proof Explorer


Theorem thincn0eu

Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses thincmo.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincmo.x φ X B
thincmo.y φ Y B
thincn0eu.b φ B = Base C
thincn0eu.h φ H = Hom C
Assertion thincn0eu φ X H Y ∃! f f X H Y

Proof

Step Hyp Ref Expression
1 thincmo.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincmo.x φ X B
3 thincmo.y φ Y B
4 thincn0eu.b φ B = Base C
5 thincn0eu.h φ H = Hom C
6 n0 X H Y f f X H Y
7 6 biimpi X H Y f f X H Y
8 1 2 3 4 5 thincmod φ * f f X H Y
9 7 8 anim12i X H Y φ f f X H Y * f f X H Y
10 df-eu ∃! f f X H Y f f X H Y * f f X H Y
11 9 10 sylibr X H Y φ ∃! f f X H Y
12 11 expcom φ X H Y ∃! f f X H Y
13 euex ∃! f f X H Y f f X H Y
14 13 6 sylibr ∃! f f X H Y X H Y
15 12 14 impbid1 φ X H Y ∃! f f X H Y