Metamath Proof Explorer


Theorem thincsect

Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B = Base C
thincsect.x φ X B
thincsect.y φ Y B
thincsect.s S = Sect C
thincsect.h H = Hom C
Assertion thincsect φ F X S Y G F X H Y G Y H X

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B = Base C
3 thincsect.x φ X B
4 thincsect.y φ Y B
5 thincsect.s S = Sect C
6 thincsect.h H = Hom C
7 eqid comp C = comp C
8 eqid Id C = Id C
9 1 thinccd φ C Cat
10 2 6 7 8 5 9 3 4 issect φ F X S Y G F X H Y G Y H X G X Y comp C X F = Id C X
11 df-3an F X H Y G Y H X G X Y comp C X F = Id C X F X H Y G Y H X G X Y comp C X F = Id C X
12 10 11 bitrdi φ F X S Y G F X H Y G Y H X G X Y comp C X F = Id C X
13 1 adantr Could not format ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> C e. ThinCat ) with typecode |-
14 3 adantr φ F X H Y G Y H X X B
15 9 adantr φ F X H Y G Y H X C Cat
16 4 adantr φ F X H Y G Y H X Y B
17 simprl φ F X H Y G Y H X F X H Y
18 simprr φ F X H Y G Y H X G Y H X
19 2 6 7 15 14 16 14 17 18 catcocl φ F X H Y G Y H X G X Y comp C X F X H X
20 13 2 6 14 8 19 thincid φ F X H Y G Y H X G X Y comp C X F = Id C X
21 12 20 mpbiran3d φ F X S Y G F X H Y G Y H X