Metamath Proof Explorer


Theorem thincsect2

Description: In a thin category, F is a section of G iff G is a section of F . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B = Base C
thincsect.x φ X B
thincsect.y φ Y B
thincsect.s S = Sect C
Assertion thincsect2 φ F X S Y G G Y S X F

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B = Base C
3 thincsect.x φ X B
4 thincsect.y φ Y B
5 thincsect.s S = Sect C
6 ancom F X Hom C Y G Y Hom C X G Y Hom C X F X Hom C Y
7 6 a1i φ F X Hom C Y G Y Hom C X G Y Hom C X F X Hom C Y
8 eqid Hom C = Hom C
9 1 2 3 4 5 8 thincsect φ F X S Y G F X Hom C Y G Y Hom C X
10 1 2 4 3 5 8 thincsect φ G Y S X F G Y Hom C X F X Hom C Y
11 7 9 10 3bitr4d φ F X S Y G G Y S X F